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General information

The goal of the conference is to bring together researchers interested in combinatorial designs,

algebraic combinatorics, finite geometry, graphs, and their applications to communication and

cryptography, especially to codes (error-correcting codes, quantum codes, network codes, etc.).

The main topics of the conference are: construction of combinatorial designs and strongly

regular graphs, including constructions from finite groups and codes, construction of linear

codes from graphs and combinatorial designs, network codes related to combinatorial struc-

tures; Hadamard matrices, association schemes, codes, designs, and graphs related to finite

geometries, q-analogues of designs and other combinatorial structures.

Organizing Committee:

• Dean Crnković (deanc@math.uniri.hr)

• Vedrana Mikulić Crnković (vmikulic@math.uniri.hr)

• Sanja Rukavina (sanjar@math.uniri.hr)

• Andrea Švob (asvob@math.uniri.hr)

Website:

https://cdc2020-math.uniri.hr/
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Conference programme

Time zone: CEST (GMT+2)

Monday, 12 July

13:55-14:00 Opening

14:00-14:50 W. Haemers: Spectral characterizations for regular graphs

14:50-15:00 Break

15:00-15:20 Edwin R. van Dam: Unit gain graphs with two distinct eigenvalues and systems of lines in complex space

15:20-15:40 Pepijn Wissing: A Hermitian adjacency matrix for Signed Directed Graphs

15:40-16:00 Vladislav Kabanov: Constructions of divisible design Cayley graphs

16:00-16:20 Maarten De Boeck: Neumaier graphs

16:20-16:40 Tianxiao Zhao: On the non-existence of srg(85,14,3,2) and the Euclidean representation

16:40-17:00 Nina Mostarac: Distance-regular graphs from the Mathieu groups

17:00-17:50 C. Colbourn: Double, double toil and trouble

17:50-18:00 Break

18:00-18:20 K. T. Arasu: Unimodular Perfect and Nearly Perfect Sequences: A Variation of Björck’s Scheme

18:20-18:40 Simone Costa: Generalizations of Heffter arrays and biembedding (multi)graphs on surfaces

18:40-19:00 Raúl M. Falcón: On the fractal dimension of strongly isotopism classes of Latin squares

19:00-19:20 Letong Hong: A Markov chain on the solution space of edge–colorings of bipartite graphs

Tuesday, 13 July

14:00-14:50 M. Buratti: Tales from my diary of symmetries

14:50-15:00 Break

15:00-15:20 John R. Schmitt: New methods to attack the Buratti-Horak-Rosa conjecture

15:20-15:40 Alessandro Montinaro: On flag-transitive symmetric 2-(v, k, λ) designs

15:40-16:00 Wojciech Bruzda: Quantum Solution to the Problem of 36 Officers of Euler

16:00-16:20 Peter Danziger: Cycle Decompositions of Complete Digraphs

16:20-16:40 David Pike: Perfect 1-Factorisations

16:40-17:00 Andrea Burgess: On the spouse-loving variant of the Oberwolfach Problem

17:00-17:50 H. Kharaghani: Constructing some combinatorial matrices by using orthogonal arrays

17:50-18:00 Break

18:00-18:20 Ronan Egan: On the Hadamard maximal determinant problem

18:20-18:40 Ivan Bailera: Butson Hadamard full propelinear codes

18:40-19:00 Thomas Y. Chen: Speeding up Inference in Machine Learning Algorithms using Hadamard Matrices

3



Wednesday, 14 July

14:00-14:50 L. Storme: Erdős-Ko-Rado, Cameron-Liebler and Hilton-Milner results in finite projective

spaces

14:50-15:00 Break

15:00-15:20 Ivan Mogilnykh: Completely regular codes in Johnson and Grassmann graphs with small covering radii

15:20-15:40 Daniel Hawtin: Neighbour-transitive codes in generalised quadrangles

15:40-16:00 Jonathan Mannaert: Cameron-Liebler line classes in AG(3,q)

16:00-16:20 Francesco Pavese: Small complete caps in PG(4n+1,q)

16:20-16:40 Ferdinando Zullo: The geometric counterpart of maximum rank metric codes

16:40-17:00 Sam Mattheus: Eigenvalues of oppositeness graphs and Erdős-Ko-Rado for flags

17:00-17:50 V. Tonchev: Pless symmetry codes, ternary QR codes, and related Hadamard matrices and

designs

17:50-18:00 Break

18:00-18:20 Patrick Solé: Bounds on permutation designs

18:20-18:40 Shuxing Li: Intersection Distribution and Its Application

18:40-19:00 Tin Zrinski: S(2,5,45) designs constructed from orbit matrices using a modified genetic algorithm

Thursday, 15 July

14:00-14:50 A. Wassermann: Linear Codes from q-analogues in Design Theory

14:50-15:00 Break

15:00-15:20 Michael Kiermaier: On α-points of q-analogs of the Fano plane

15:20-15:40 Kristijan Tabak: On Automorphisms of a binary Fano plane

15:40-16:00 Relinde Jurrius: Constructions of new matroids and designs over Fq

16:00-16:20 Miguel Ángel Navarro-Pérez: A Combinatorial Approach to Flag Codes

16:20-16:40 Domenico Labbate: Extending perfect matchings to Hamiltonian cycles in line graphs

16:40-16:50 Break

16:50-17:10 Renata Vlahović Kruc: Quasi-symmetric 2-(28,12,11) designs with an automorphism of order 5

17:10-17:30 Vedran Krčadinac: On 4-designs with three intersection numbers

17:30-17:50 Krystal Guo: Entanglement of free Fermions on distance-regular graphs

17:50-18:10 Marina Šimac: On some LDPC codes

18:10-18:30 Ana Grbac: On some constructions of LCD codes
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Friday, 16 July

14:00-14:50 M. Greferath: Group Testing as Coding over the binary semifield via Residuation Theory

14:50-15:00 Break

15:00-15:20 Faina Solov’eva: Reed-Muller like codes and their intersections

15:20-15:40 Ludmila Tsiovkina: On abelian distance-regular covers of complete graphs related to rank 3 permutation

groups

15:40-16:00 Eric Swartz: Restrictions on parameters of partial difference sets in nonabelian groups

16:00-16:20 Marko Orel: A family of non-Cayley cores that is constructed from vertex-transitive or strongly regular

self-complementary graphs

16:20-16:40 Sara D. Cardell: Counting erasure patters of SPC product codes by means of bipartite graphs

16:40-17:00 Sara Ban: A construction of Z4-codes from generalized bent functions

17:00-17:20 Matteo Mravić: On extremal self-dual Z4-codes

17:20-17:30 Closing
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Invited speakers

1. Marco Buratti, University of Perugia, Italy

2. Charles Colbourn, Arizona State University, Arizona, USA

3. Marcus Greferath, University College Dublin, Ireland

4. Willem Haemers, Tilburg University, The Netherlands

5. Hadi Kharaghani, University of Lethbridge, Canada

6. Leo Storme, Ghent University, Belgium

7. Vladimir Tonchev, Michigan Technological University, Houghton, Michigan, USA

8. Alfred Wassermann, University of Bayreuth, Germany
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Tales from my diary of symmetries

Marco Buratti

University of Perugia

I would like to give a roundup of problems, conjectures, unpublished results and autobi-

ographic stories concerning my favorite math subject, that is combinatorial designs with

many symmetries.
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Double, double toil and trouble

Charles J. Colbourn

Arizona State University, Tempe, Arizona, USA

To achieve access balancing for distributed storage systems, both the points and blocks

of a design are linearly ordered, computing each point sum as the sum of the indices of

blocks containing that point and each block sum as the sum of the indices of points

contained in that block. Popularity block (point) ordering asks for the point (resp.,

block) sums to be as equal as possible. In this talk, we discuss popularity orderings

for Steiner quadruple systems (S(3, 4, v) designs). First we observe that a well-known

doubling construction establishes bounds on block sums of SQSs. Then we adapt the

doubling construction to yield bounds on point sums that provide optimal popularity

block orderings for SQS(v)s whenever v ≡ 4, 8 (mod 12) and v > 8.
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Group Testing as Coding over the binary semifield via Residuation Theory

Marcus Greferath

School of Mathematics and Statistics

University College Dublin

Republic of Ireland

We present a novel approach to (non-adaptive) group testing by describing it in terms

of residuated pairs on partially ordered sets. The resulting efficient decision scheme cov-

ers large classes of group testing schemes for pandemic diseases during the initial low

prevalence phase.

Our design of the testing schemes is based on incidence matrices of finite (partial)

linear spaces. The results may be tailored for different estimated disease prevalence levels.

The key idea is that by building sufficient structure into the test-design matrix, one may

increase what may be called the efficiency of the testing.

We also observe that generalized quadrangles are of significant advantage in compari-

son with other types of block designs. For simplicity, we state our results when the tests

are error-free. An adaptation to a low error-rate scenario is actually beyond the scope of

this work but will briefly discussed in a final section.

Joint work with Cornelia Roessing.
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Spectral characterizations for regular graphs

Willem Haemers

Tilburg University, The Netherlands

An important activity in algebraic graph theory is to establish which properties are char-

acterized by the spectrum of the adjacency matrix. Of special interest are properties that

include regularity. Two famous examples of such problems are: Being strongly regular,

and being the incidence graph of a projective plane. We will survey several of these prop-

erties. The focus will be on counter examples which consist of pairs of cospectral regular

graphs, where one has a given property and the other one not. We will also show existence

of NP-hard graph properties which are characterized by the spectrum.
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Constructing some combinatorial matrices by using orthogonal arrays

Hadi Kharaghani

University of Letbridge, Lethbridge, Canada

A unified method is used to construct weighing matrices, balanced weighing matrices,

balanced generalized weighing matrices, and symmetric designs. These include:

• Assuming the weight p in a seed weighing matrix W (n, p) is a prime power, then

there is a

W

(
pm+1 − 1

p− 1
(n− 1) + 1, pm+1

)
for each positive integer m. The case of n = p+ 1 reduces to the balanced weighing

matrices with classical parameters

W

(
pm+2 − 1

p− 1
, pm+1

)
.

• Assuming the existence of a seed twin SBIBD(2p+1, p, p−1
2

), p an odd prime power,

then there is a

SBIBD

(
2p(

pm+1 − 1

p− 1
) + 1, pm+1, pm(

p− 1

2
)

)
for each positive integer m.

• Assuming the existence of a seed SBIBD(n2 +n+ 1, n+ 1, 1), n+ 1 a prime power,

then there is a

SBIBD

(
(b− 1)

ak − 1

a− 1
+ 1, ak, ak(fraca− 1b− 1)

)
,

where a = nm−1
a−1

, b = nm+1−1
n−1

, m,n arbitrary positive integers.
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Erdős-Ko-Rado, Cameron-Liebler and Hilton-Milner results in finite

projective spaces

Leo Storme

Ghent University

Department of Mathematics: Analysis, Logic and Discrete Mathematics

Krijgslaan 281 - Building S8

9000 Ghent, Belgium

Let PG(n, q) be the projective space of dimension n over the finite field Fq of order q.

An Erdős-Ko-Rado k-set in PG(n, q) is a set of k-spaces, pairwise intersecting in at

least one point. Here, the main problem is to characterize the largest Erdős-Ko-Rado

k-sets in PG(n, q).

Cameron-Liebler k-sets in PG(n, q) can be defined in many equivalent ways. For

instance, if (k + 1)|(n + 1) and k-spreads exist in PG(n, q), a Cameron-Liebler k-set in

PG(n, q) with parameter x is a set of k-spaces sharing always exactly x k-spaces with every

k-spread in PG(n, q). Here, the main problem is to investigate whether Cameron-Liebler

k-sets in PG(n, q) with parameter x exist, and if such Cameron-Liebler k-sets exist, to

characterize Cameron-Liebler k-sets in PG(n, q) with parameter x.

One of the interesting facts about these two types of substructures in finite projective

spaces is that many techniques from algebraic combinatorics can be used to investigate

these substructures.

This talk will present results on these two types of substructures, showing the great

relevance of algebraic combinatorics for finite geometry.

The Hilton-Milner problem in PG(n, q) regards the characterization of the second

largest maximal Erdős-Ko-Rado k-sets in PG(n, q). Hilton-Milner results have proven

to be very useful to derive results on Cameron-Liebler k-sets in PG(n, q), showing the

interaction between all these types of substructures.
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Pless symmetry codes, ternary QR codes, and related Hadamard matrices

and designs

Vladimir D. Tonchev

Michigan Technological Universityn

We consider a code L(q) which is monomially equivalent to the Pless symmetry code

C(q) of length 2q+2 that contains the (0,1)-incidence matrix of a Hadamard 3-(2q+2, q+

1, (q − 1)/2) design D(q) associated with a Paley-Hadamard matrix of type II. Similarly,

any ternary extended quadratic residue code contains the incidence matrix of a Hadamard

3-design associated with a Paley-Hadamard matrix of type I. If q = 5, 11, 17 and 23 then

the full permutation automorphism group of L(q) coincides with the full automorphism

group of D(q), and a similar result holds for the ternary extended quadratic residue codes

of lengths 24 and 48. All Hadamard matrices of order 36 formed by codewords of the

Pless symmetry code C(17) are enumerated and classified up to equivalence. There are

two equivalence classes of such matrices: the Paley-Hadamard matrix H of type I with a

full automorphism group of order 19584, and a second regular Hadamard matrix H ′ such

that the symmetric 2-(36, 15, 6) design D associated with H ′ has trivial full automorphism

group, and the incidence matrix of D spans a ternary code equivalent to C(17).
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Linear Codes from q-analogues in Design Theory

Alfred Wassermann

Department of Mathematics, University of Bayreuth, Bayreuth, Germany

alfred.wassermann@uni-bayreuth.de

In 1967, Rudolph presented a decoding method for linear codes based on majority decision

with non-orthogonal parity check equations. Whenever a linear code has a point-block

incidence matrix of a combinatorial design (with t ≥ 2) as a parity check matrix, this

decoder can be used.

These linear codes from combinatorial designs are only interesting if the p-rank of the

point-block incidence matrix is small enough. Hamada (1973) determined the p-rank for

the incidence matrices of the so-called classical or geometric designs. It is a long-standing

conjecture that the incidence matrices from this class of designs are of minimal p-rank.

In this talk we will show that linear codes from subspace designs (q-analogues of

combinatorial designs) are at least as good to decode with Rudolph’s method as the

linear codes from their corresponding geometric designs, but for many parameters the

decoder needs exponentially less parity check equations.

Now, an obvious step is to search for q-analogues of other combinatorial structures

and study the linear codes from their incidence matrices. In this talk, we will explore

q-analogues of group divisible designs, lifted MRD codes and designs in polar spaces and

show how those objects fit into the picture.
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Contributed talks

1. K. T. Arasu: Unimodular Perfect and Nearly Perfect Sequences: A Variation of Björck’s Scheme

2. Ivan Bailera: Butson Hadamard full propelinear codes

3. Sara Ban: A construction of Z4-codes from generalized bent functions

4. Maarten De Boeck: Neumaier graphs

5. Wojciech Bruzda: Quantum Solution to the Problem of 36 Officers of Euler

6. Andrea Burgess: On the spouse-loving variant of the Oberwolfach Problem

7. Sara D. Cardell: Counting erasure patters of SPC product codes by means of bipartite graphs

8. Thomas Y. Chen: Speeding up Inference in Machine Learning Algorithms using Hadamard Matrices

9. Simone Costa: Generalizations of Heffter arrays and biembedding (multi)graphs on surfaces

10. Edwin R. van Dam: Unit gain graphs with two distinct eigenvalues and systems of lines in complex space

11. Peter Danziger: Cycle Decompositions of Complete Digraphs

12. Ronan Egan: On the Hadamard maximal determinant problem

13. Raúl M. Falcón: On the fractal dimension of strongly isotopism classes of Latin squares

14. Ana Grbac: On some constructions of LCD codes

15. Krystal Guo: Entanglement of free Fermions on distance-regular graphs

16. Dan Hawtin: Neighbour-transitive codes in generalised quadrangles

17. Letong Hong: A Markov chain on the solution space of edge-colorings of bipartite graphs

18. Relinde Jurrius: Constructions of new matroids and designs over Fq

19. Vladislav Kabanov: Constructions of divisible design Cayley graphs

20. Michael Kiermaier: On α-points of q-analogs of the Fano plane

21. Vedran Krčadinac: On 4-designs with three intersection numbers

22. Domenico Labbate: Extending perfect matchings to Hamiltonian cycles in line graphs

23. Shuxing Li: Intersection Distribution and Its Application

24. Jonathan Mannaert: Cameron-Liebler line classes in AG(3, q)

25. Sam Mattheus: Eigenvalues of oppositeness graphs and Erdős-Ko-Rado for flags

26. Ivan Mogilnykh: Completely regular codes in Johnson and Grassmann graphs with small covering radii

27. Alessandro Montinaro: On flag-transitive symmetric 2-(v, k, λ) designs

28. Nina Mostarac: Distance-regular graphs from the Mathieu groups

29. Matteo Mravić: On extremal self-dual Z4-codes

30. Miguel Ángel Navarro-Pérez: A Combinatorial Approach to Flag Codes

31. Marko Orel: A family of non-Cayley cores that is constructed from vertex-transitive or strongly regular

self-complementary graphs

32. Francesco Pavese: Small complete caps in PG(4n+ 1, q)

33. David Pike: Perfect 1-Factorisations

34. John R. Schmitt: New methods to attack the Buratti-Horak-Rosa conjecture

35. Patrick Solé: Bounds on permutation designs

36. Faina Solov’eva: Reed-Muller like codes and their intersections

37. Eric Swartz: Restrictions on parameters of partial difference sets in nonabelian groups

15



38. Marina Šimac: On some LDPC codes

39. Kristijan Tabak: On Automorphisms of a binary Fano plane

40. Ludmila Tsiovkina: On abelian distance-regular covers of complete graphs related to rank 3 permutation

groups

41. Renata Vlahović Kruc: Quasi-symmetric 2-(28,12,11) designs with an automorphism of order 5

42. Pepijn Wissing: A Hermitian adjacency matrix for Signed Directed Graphs

43. Tianxiao Zhao: On the non-existence of srg(85,14,3,2) and the Euclidean representation

44. Tin Zrinski: S(2,5,45) designs constructed from orbit matrices using a modified genetic algorithm

45. Ferdinando Zullo: The geometric counterpart of maximum rank metric codes
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Unimodular Perfect and Nearly Perfect Sequences: A Variation of Björck’s

Scheme

K. T. Arasu

Riverside Research 2640 Hibiscus Way Beavercreek, OH 45431, USA

Constant Amplitude (CA), Zero Auto Correlation (ZAC) sequences (or CAZAC se-

quences, aka perfect sequences) have numerous applications: linear system parameter

identification, real-time channel evaluation, synchronization, timing measurements, direct-

sequence spread spectrum multiple access (DS/SSMA), frequency hopped spread-spectrum

multiple access (FH/SSMA), and two-dimensional processing. The study of CAZAC prop-

erty originates in radar and communication theory. The constant amplitude property

ensures the ability to transmit signals at peak power constantly, while the zero autocorre-

lation property ensures that returning radar signals do not interfere with outgoing signals.

We investigate Björck sequences, which are CAZAC. We also generalize these notions to

what we term as CASAC by permitting small autocorrelations (SAC). Out-of-phase peri-

odic auto-correlation values of these Björck-like CASAC sequences can be made to set to

any desirable (small) constant value. Using only parameter based group ring calculations,

we characterize all 2-valued and almost 2-valued (i.e., two-valued except for the first posi-

tion which uses a third value) CAZAC and CASAC sequences. A one-parameter infinite

family of CASAC we construct may have applications in Multiple-Input Multiple-Output

(MIMO) areas. Toward this, we introduce a performance measure we term as cross merit

factor to study cross correlation behavior, generalizing the celebrated notion of Golay

Merit Factor (GMF).

Joint work with Michael R. Clark and Jeffrey R. Hollon.
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Butson Hadamard full propelinear codes

I. Bailera

Department of Applied Mathematics, University of Zaragoza, Spain

In this talk we deal with Butson Hadamard matrices, and codes over finite rings

coming from these matrices in logarithmic form, called BH-codes. We introduce a new

morphism of Butson Hadamard matrices through a generalized Gray map on the matrices

in logarithmic form, which is comparable to the morphism given in a recent note of Ó

Catháin and Swartz. That is, we show how, if given a Butson Hadamard matrix over

the kth roots of unity, we can construct a larger Butson matrix over the lth roots of unity

for any l dividing k, provided that any prime p dividing k also divides l. We prove that

a Zps-additive code with p a prime number is isomorphic as a group to a BH-code over

Zps and the image of this BH-code under the Gray map is a BH-code over Zp (binary

Hadamard code for p = 2). Further, we investigate the inherent propelinear structure

of these codes (and their images) when the Butson matrix is cocyclic. Some structural

properties of these codes are studied and examples are provided.

Joint work with J. A. Armario (U. de Sevilla, Spain) and R. Egan (NUI Galway,

Ireland).
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A construction of Z4-codes from generalized bent functions

Sara Ban

Department of Mathematics, University of Rijeka

A generalized Boolean function on n variables is a mapping f : Fn2 → Z2h . The generalized

Walsh-Hadamard transformation of f is f̃(v) =
∑

x∈Fn2
ωf(x)(−1)〈v,x〉, where ω = e

2πi

2h . A

generalized bent function (gbent function) is a generalized Boolean function f such that

|f̃(v)| = 2
n
2 , for every v ∈ Fn2 . We consider generalized bent functions from Fn2 into Z4.

A Type IV-II Z4-code is a self-dual code over Z4 with the property that all Euclidean

weights are divisible by eight and all codewords have even Hamming weight.

The subject of this talk is a construction of Type IV-II codes over Z4 from generalized

bent functions.

We use generalized bent functions for a construction of self-orthogonal codes over Z4

of length 2m, for m odd, m ≥ 3, and prove that for m ≥ 5 those codes can be extended

to Type IV-II Z4-codes. From that family of Type IV-II Z4-codes, we construct a family

of self-dual Type II binary codes by using the Gray map.

We consider the weight distributions of the obtained codes.

This is joint work with Sanja Rukavina.
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Neumaier graphs

Maarten De Boeck

Eindhoven University of Technology

A Neumaier graph is an edge-regular graph with a regular clique. A lot of strongly

regular graphs (but clearly not all of them) are indeed Neumaier, but in [1] it was asked

whether there are Neumaier graphs that are not strongly regular. This question was only

solved very recently (see [2]), so now we know there are so-called strictly Neumaier graphs.

In this talk I will discuss several new results on Neumaier graphs, including bounds and

(non)-existence results. I will focus on a new construction producing lots of new strictly

Neumaier graphs. This construction uses basic number theory, and raises some not-so

basic number theory questions. I will also address some results abouth the eigenvalues of

strictly Neumaier graphs.

This is joint work with Aida Abiad, Wouter Castryck, Bart De Bruyn, Jack Koolen

and Sjanne Zeijlemaker

[1] A. Neumaier, Regular cliques in graphs and special 1 1/2-designs. 1981.

[2] G.R. Greaves and J.H. Koolen, Edge-regular graphs with regular cliques. European

J. Combin., 71, 194–201, 2018.
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Quantum Solution to the Problem of 36 Officers of Euler

Wojciech Bruzda

Institute of Theoretical Physics, Jagiellonian University, ul.  Lojasiewicza 11,

30-348 Kraków, Poland

We present analytical solution to the quantum analogue of the famous problem of 36

officers of Euler. The result gives positive answer to several related questions concerning

existence of two quantum orthogonal Latin squares of size six, Absolutely Maximally

Entangled state AME(4, 6) for four parties with six levels each, 2−unitary matrix of size

36 with maximal entangling power, perfect tensor Tijkl with four indices each running

from 1 to 6 or pure nonadditive quantum error correction code ((4, 1, 3))6.

This is the joint work with Suhail Ahmad Rather, Adam Burchardt, Grzegorz Rajchel-

Mieldzioć, Arul Lakshminarayan and Karol Życzkowski.

Preprint is available online: arXiv:2104.05122.

21



On the spouse-loving variant of the Oberwolfach Problem

Andrea Burgess

University of New Brunswick

In the 1960s, Ringel posed the Oberwolfach Problem: at a conference with v attendees,

the dining room has tables of sizes n1, n2, . . . , nt, where n1 +n2 +· · ·+nt = v. Is it possible

to find a seating plan over successive nights of the conference so that each person sits next

to each other person exactly once?

In graph-theoretical terms, Ringel’s problem asks for a 2-factorization of Kv in which

each 2-factor is isomorphic to a given 2-factor F . Such a factorization of the complete

graph can exist only if v is odd. For even orders, it is common to study the maximum

packing variant, in which we factor Kv − I, the complete graph with the edges of a 1-

factor removed; this is sometimes referred to as the spouse-avoiding variant. In this talk,

we consider the minimum covering version, which we nickname the spouse-loving variant.

Here, given a 2-factor F of even order v, we seek an F -factorization of Kv+I, the complete

graph with the edges of a 1-factor duplicated. We discuss the problem in the cases that

the 2-factor F is uniform or bipartite.

This talk includes joint work with Noah Bolohan, Iona Buchanan, Mateja Šajna and

Ryan Van Snick.
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Counting erasure patters of SPC product codes by means of bipartite graphs

Sara D. Cardell

Centro de Matemática, Computação e Cognição

Universidade Federal do ABC (UFABC)

Brazil

The single parity-check (SPC) code is one of the most popular MDS error detection

codes, since it is very easy to implement [1]. One bit is appended to an information

sequence of length n− 1, such that the resultant codeword has an even number of ones.

Two or more SPC codes can be used jointly to obtain an SPC product code. This product

code has 4 as minimum distance, then it can recover all erasure patterns with one, two,

and three erasures. However, up to 2n−1 erasures can be corrected in some special cases.

Furthermore, a codeword of length n2 can be represented by an erasure pattern of size

n × n, where the unique information considered is the position of the erasures. In [1],

authors proposed an approach of the post-decoding erasure rate of the SPC product code.

This process was based on observing the structure of the erasure patterns, classifying them

into correctable or uncorrectable. In this work, we represent each erasure pattern by a

binary matrix where there is a 1 in the position of the erasures. Then, the problem

of counting patterns can be seen as a problem of counting binary matrices with some

special properties. At the same time, we can represent each erasure pattern by a bipartite

graph [2] with n nodes in each vertex class and the same number of edges as erasures.

The binary matrix mentioned before is the bi-adjacency matrix of the bipartite graph.

Then, the problem of counting uncorrectable erasure patterns can be seen as a problem

of counting bipartite graphs with cycles. In [3], the author used Kostka number to count

binary matrix with a fixed row and column sum. Here, we use the same idea to provide an

expression that helps to count the number of bipartite graphs with cycles and, therefore,

to count the number of strict uncorrectable erasure patterns.

Joint work with professor Joan-Josep Climent (Universitat d’Alacant, Spain).

[1] Kousa, M. A.: A novel approach for evaluating the performance of SPC product codes

under erasure decoding. IEEE Transactions on Communications 50(1), 7–11 (2002).

[2] R. Diestel, Graph Theory, Springer-Verlag, New York, NY, 2000.

[3] Brualdi, R. A.: Algorithms for constructing (0,1)-matrices with prescribed row and

column sum vectors. Discrete Mathematics 306(23), 3054–3062 (2006).
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Speeding up Inference in Machine Learning Algorithms using Hadamard

Matrices

Thomas Y. Chen

Academy for Mathematics, Science, and Engineering, Rockaway, NJ 07058,

USA

Machine learning algorithms for classification tasks have a variety of use cases and

applications. One model type, the artificial neural network, has become increasingly

popularized over the last decades, with fascinating applications in computer vision and

elsewhere. Such classifier algorithms have a number of parameters and yield a per-class

value. In this work, we discuss the use of a Hadamard matrix to initialize the classifier,

which in turn speeds up inference. The aforementioned matrix is position at the final

classification transform, which yields two primary benefits. Firstly, it is a deterministic,

low-memory, and easily generated matrix that can be used classify. Secondly, it is removes

the need to perform matrix-matrix multiplication. By speeding up performance, we can

enable further state-of-the-art results on many tasks that have immense applicability in

the real world.
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Generalizations of Heffter arrays and biembedding (multi)graphs on surfaces

Simone Costa

University of Brescia

In this talk, we present two classes of partially filled arrays that generalize the concept of

Heffter array introduced by Archdeacon in 2015.

First of all, we introduce the relative Heffter arrays here denoted by Ht(m,n; s, k). A

Ht(m,n; s, k) is an m × n partially filled array with elements in Zv, where v = 2nk + t,

whose rows contain s filled cells and whose columns contain k filled cells, such that the

elements in every row and column sum to zero and, for every x ∈ Zv not belonging to the

subgroup of order t, either x or −x appears in the array. Then we present the more general

class of λ-fold relative Heffter arrays denoted by λHt(m,n; s, k). In this case v = 2nk
λ

+ t

and, given an element x ∈ Zv that does not belong to the subgroup of order t, the sum

of the occurrences of x and −x in the array is required to be λ.

Finally, we show that also these generalizations of the Heffter arrays, as well as the

classical concept, can be used to construct 2-colourable embeddings (i.e. biembeddings)

of cyclic cycle decompositions of complete multipartite (multi)graphs into orientable sur-

faces.

Joint work with Fiorenza Morini, Anita Pasotti and Marco Antonio Pellegrini.
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Unit gain graphs with two distinct eigenvalues and systems of lines in

complex space

Edwin R. van Dam

Tilburg University

Since the introduction of the Hermitian adjacency matrix for digraphs, interest in so-

called complex unit gain graphs has surged. In this talk, we consider gain graphs with

two distinct eigenvalues. Analogously to graphs with few distinct eigenvalues, a great

deal of structural symmetry is required. This allows us to draw a parallel to well-studied

systems of lines in complex space, through a natural correspondence to unit-norm tight

frames. Examples are drawn from various relevant concepts related to lines in complex

space with few angles, including SIC-POVMs and MUBs. Other examples relate to the

hexacode, Coxeter-Todd lattice, and the Van Lint-Schrijver association scheme. Many

other examples can be obtained as induced subgraphs by employing a technique parallel

to the dismantling of association schemes. Specific examples thus arise from (partial)

spreads in some small generalized quadrangles. Finally, we offer a full classification of

two-eigenvalue gain graphs with degree at most 4, or with multiplicity at most 3.

Joint work with Pepijn Wissing.
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Cycle Decompositions of Complete Digraphs

Peter Danziger

Toronto, Canada

We consider the problem of decomposing the complete directed graph K∗n into directed

cycles of given lengths. We consider general necessary conditions for a directed cycle

decomposition of K∗n into t cycles of lengths m1,m2, . . . ,mt to exist and provide a con-

struction for creating such decompositions in the case where there is one ‘large’ cycle.

We give a complete solution in the case when there are exactly three cycles of lengths

α, β, γ 6= 2. Somewhat surprisingly, the general necessary conditions turn out not to be

sufficient in this case. In particular, taking 2 < α ≤ β ≤ γ, when γ = n, α + β > n + 2

and α + β ≡ n (mod 4), K∗n is not decomposable.

Joint work with Andrea Burgess and Tariq Javed.
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On the Hadamard maximal determinant problem

Ronan Egan

National University of Ireland, Galway

Dublin City University

In a celebrated paper of 1893, Hadamard established the maximal determinant the-

orem, which establishes an upper bound on the determinant of a matrix with complex

entries of norm at most 1. His paper concludes with the suggestion that mathematicians

study the maximum value of the determinant of an n × n matrix with entries in {±1}.
This is the Hadamard maximal determinant problem.

It is known that an n×n matrix with entries in {±1} that attains Hadamard’s upper

bound exists only when n is equal to 1, 2, or a multiple of 4. Such a matrix is now

commonly known as a Hadamard matrix, and these have been well studied. Less well

known, is the state of play where n > 4 and n 6≡ 0 mod 4. In this talk I will survey the

progress on the Hadamard maximal determinant problem for n 6≡ 0 mod 4.

This is joint work with Patrick Browne, Fintan Hegarty, and Pádraig Ó Catháin.
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On the fractal dimension of strongly isotopism classes of Latin squares

Raúl M. Falcón

Department of Applied Mathematics I.

Universidad de Sevilla, Spain.

Email: rafalgan@us.es

Based on an iterative construction of pseudo-random sequences, Dimitrova and Markovski

[1] described a graphical representation of quasigroups by means of image patterns with a

certain fractal character. It is so that one may distinguish among fractal and non-fractal

quasigroups. In the literature, the former are recommended for designing error detecting

codes, whereas the second ones play a relevant role for designing cryptographic primitives.

Furthermore, the analysis and recognition of these fractal image patterns have recently

turned out to be an efficient way to distinguish isomorphism classes of non-idempotent

Latin squares [2, 3]. This talk delves into this topic by introducing the concept of (s, t)-

standard set of image patterns associated to a quasigroup. The mean fractal dimension of

these standard sets constitutes a new strongly isotopism invariant, which enables one to

characterize in an efficient way distinct strongly isotopism classes of Latin squares, even

if they are idempotent.

[1] V. Dimitrova, S. Markovski, Classification of quasigroups by image patterns. In: Pro-

ceedings of the Fifth International Conference for Informatics and Information Tech-

nology, Bitola, Macedonia, 2007; 152–160.

[2] R. M. Falcón, Recognition and analysis of image patterns based on Latin squares by

means of Computational Algebraic Geometry, Mathematics 9 (2021), paper 666, 26

pp.

[3] R. M. Falcón, V. Álvarez, F. Gudiel, A Computational Algebraic Geometry approach

to analyze pseudo-random sequences based on Latin squares, Adv. Comput. Math. 45

(2019), 1769–1792.
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On some constructions of LCD codes

Ana Grbac

abaric@math.uniri.hr

Department of Mathematics - University of Rijeka, Croatia

Linear codes with complementary duals, shortly named LCD codes, are linear codes whose

intersection with their duals is trivial. In this talk, we present a construction for LCD

codes over finite fields from the adjacency matrices of two-class association schemes. These

schemes consist of either strongly regular graphs (SRGs) or doubly regular tournaments

(DRTs).

Joint work with Dean Crnković and Andrea Švob.
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Entanglement of free Fermions on distance-regular graphs

Krystal Guo

University of Amsterdam

Many physical processes evolving over time on an underlying graph have led to prob-

lems in spectral graph theory, including quantum walks. These problems provide new

graph invariants and also new applications for theorems about the eigenspaces of graphs.

In this talk, we will consider free fermions on vertices of distance-regular graphs are consid-

ered. Using concepts from Terwilliger algebras, we study the entanglement Hamiltonian.

This is based on joint work with

Joint work with Nicolas Crampé and Luc Vinet.
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Neighbour-transitive codes in generalised quadrangles

Daniel Hawtin

Department of Mathematics, University of Rijeka

A code C in an arbitrary graph Γ is a subset of the vertex set of Γ . The minimum

distance δ of a code C is the smallest distance between a pair of distinct elements of C

and the graph metric gives rise to the distance partition {C,C1, . . . , Cρ}, where ρ is the

maximum distance between any vertex of Γ and its nearest element in C. In this talk we

consider the case where Γ is the point-line incidence graph of a generalised quadrangle Q
and we say that C is a code in the generalised quadrangle Q. Since the diameter of Γ is 4,

both ρ and δ are at most 4. If δ = 4 then C is a partial ovoid or partial spread of Q, and if,

additionally, ρ = 2 then C is an ovoid or a spread. A code C in Q is neighbour-transitive

if its automorphism group acts transitively on each of the sets C and C1. Our main results

i) classify all neighbour-transitive codes admitting an insoluble group of automorphisms

in thick classical generalised quadrangles that correspond to ovoids or spreads, and ii)

give two infinite families and six sporadic examples of neighbour-transitive codes with

minimum distance δ = 4 in the classical generalised quadrangle W3(q) that are not ovoids

or spreads.

Joint work with Dean Crnković and Andrea Švob.
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A Markov chain on the solution space of edge-colorings of bipartite graphs

Letong Hong

Dept. Mathematics, Massachusetts Institute of Technology

clhong@mit.edu

The Latin squares Ln are n × n grids such that each row and column consist of

numbers 1 to n. It is a family of important combinatorial objects but with no known

easily computable formula for its quantity. A Latin rectangle is an (n− k)× n grid with

each row consisting 1 to n and each column has no repeat. One may see that there is a

natural bijection between all possible Latin square completions of Latin rectangles and

the proper edge k-colorings of a regular equi-bipartite graph.

Counting and sampling are related problems. Motivated by the above, we exhibit

an irreducible Markov chain M on the edge k-colorings of bipartite graphs based on

certain properties of the solution space. We show that diameter of this Markov chain

grows linearly with the number of edges in the graph. We also prove a polynomial upper

bound on the inverse of acceptance ratio of the Metropolis-Hastings algorithm when the

algorithm is applied on M with the uniform distribution of all possible edge k-colorings

of G.

Joint work with István Miklós, Alfréd Rényi Institute of Mathematics.

[1] L. Hong and I. Miklos. A Markov chain on the solution space of edge-colorings of

bipartite graphs. Submitted. https://arxiv.org/abs/2103.11990
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Constructions of new matroids and designs over Fq

Relinde Jurrius

Netherlands Defence Academy

A perfect matroid design (PMD) is a matroid whose flats of the same rank all have

the same size. As the name suggest, these matroids give rise to certain designs, and in

the literature this construction is used to find new designs. The aim of this work is to

establish a q-analogue of this construction.

We will introduce the q-analogue of a PMD and its properties. In order to do that,

we first define a q-matroid in terms of its flats. We show that q-Steiner systems are

examples of q-PMD’s, just like Steiner systems are examples of PMD’s. We use the q-

matroid structure to construct subspace designs from q-Steiner systems. We apply this

construction to known q-Steiner systems and discuss the designs coming from it.

This talk is based on joint work with Eimear Byrne, Michela Ceria, Sorina Ionica and

Elif Saçikara.
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Constructions of divisible design Cayley graphs

Vladislav Kabanov

Krasovskii Institute of Mathematics and Mechanics, S. Kovalevskaja st. 16,

Yekaterinburg 620990, Russia

A k-regular graph on v vertices is a divisible design graph with parameters (v, k, λ1, λ2,m, n)

if the vertex set can be partitioned into m classes of size n, such that two distinct vertices

from the same class have exactly λ1 common neighbours, and two vertices from different

classes have exactly λ2 common neighbours [1, 3]. This partition into classes is called a

canonical partition.

Divisible design graphs are a special case of Deza graphs. A Deza graph with pa-

rameters (v, k, b, a) is a k-regular graph on v vertices in which the number of common

neighbours of two distinct vertices takes exactly two values a or b, where a ≤ b. Deza

graphs were introduced in [2]. Deza graphs generalise strongly regular graphs since the

number of common neighbours are independent of vertex adjacency.

Let G be a finite group and S be a subset of G which does not contain the identity

element and is closed under inversion. The Cayley graph Cay(G,S) is a graph with the

vertex set G in which two vertices x, y are adjacent if and only if xy−1 ∈ S. The following

theorem gives necessary and sufficient conditions for a Deza Cayley graph to be a divisible

design Cayley graph.

Theorem. Let Cay(G,S) be a Deza graph with parameters (v, k, b, a). Let A, B and

{e} be a partition of G and SS−1 be a multiset such that SS−1 = aA + bB + k{e}. If

either A ∪ {e} or B ∪ {e} is a subgroup of G, then Cay(G,S) is a divisible design graph

and the right cosets of this subgroup give a canonical partition of the graph. Conversely,

if Cay(G,S) is a divisible design graph, then the class of its canonical partition which

contains the identity of G is a subgroup of G and classes of the canonical partition of the

divisible design graph coincide with the cosets of this subgroup.

This Theorem shows that Cayley divisible design graphs arise only by means of di-

visible difference sets relative to some subgroup. Using divisible difference sets relative

to some subgroup we present new constructions of divisible design graphs. This is joint

work with Leonid Salaginov.

[1] D. Crnković, W. H. Haemers, Walk-regular divisible design graphs, Des. Codes Cryp-

togr. 72 (2014) 165–175.
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[2] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, Deza graphs: A

generalization of strongly regular graphs, J. Comb. Designs, 7 (1999) 359–405.

[3] W.H. Haemers, H. Kharaghani, M. Meulenberg, Divisible design graphs J. Combi-

natorial Theory A, 118 (2011) 978–992.
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On α-points of q-analogs of the Fano plane

Michael Kiermaier

Universität Bayreuth

Arguably, the most important open problem in the theory of q-analogs of designs is

the question for the existence of a q-analog D of the Fano plane. It is undecided for every

single prime power value q ≥ 2.

A point P is called an α-point of D if the derived design of D in P is a geometric

spread. In 1996, Simon Thomas has shown that there must always exist at least one non-

α-point. For the binary case q = 2, Olof Heden and Papa Sissokho have improved this

result in 2016 by showing that the non-α-points must form a blocking set with respect to

the hyperplanes.

We will show that a hyperplane consisting only of α-points implies the existence of a

partiton of the symplectic generalized quadrangle W (q) into spreads. As a consequence,

the statement of Heden and Sissokho is generalized to all primes q and all even values of

q.
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On 4-designs with three intersection numbers

Vedran Krčadinac

Department of Mathematics, Faculty of Science, University of Zagreb,

Bijenička 30, HR-10000 Zagreb, Croatia

A t-(v, k, λ) design with two block intersection numbers is called quasi-symmetric. For

such designs, it is known that t ≤ 4 holds [2] and the only examples with t = 4 are the

derived Witt design 4-(23, 7, 1) and its complement [1, 4]. Regarding designs with three

block intersection numbers, t ≤ 5 holds and the only examples with t = 5 are hypothesized

to be the Witt design 5-(24, 8, 1) and its complement [5].

We will report on 4-designs with three intersection numbers and present a table of

small admissible parameters. By the Cameron-Delsarte theorem [2, 3], such designs must

be schematic, meaning that the blocks form a symmetric association scheme. This imposes

strong restrictions on the parameters. However, in this case there are small examples not

related to the Witt design, e.g. a 4-(47, 11, 8) design constructed by Tonchev [6].

This is joint work with Renata Vlahović Kruc.

[1] A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka Math. J. 16

(1979), no. 2, 353–356.

[2] P. J. Cameron, Extending symmetric designs, J. Combinatorial Theory Ser. A 14

(1973), 215–220.

[3] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips

Res. Rep. Suppl. No. 10 (1973), vi+97 pp.

[4] H. Enomoto, N. Ito, R. Noda, Tight 4-designs, Osaka Math. J. 16 (1979), no. 1,

39–43.

[5] Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin.

Theory Ser. A 69 (1995), no. 1, 36–50.

[6] V. D. Tonchev, Quasi-symmetric 2-(31, 7, 7) designs and a revision of Hamada’s

conjecture, J. Combin. Theory Ser. A 42 (1986), no. 1, 104–110.
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Extending perfect matchings to

Hamiltonian cycles in line graphs

Domenico Labbate

Universit degli Studi della Basilicata - Potenza (Italy)

A graph admitting a perfect matching has the Perfect-Matching-Hamiltonian property

(for short the PMH-property) if each of its perfect matchings can be extended to a

Hamiltonian cycle. In this talk we will present some sufficient conditions for a graph G

which guarantee that its line graph L(G) has the PMH-property. In particular, we prove

that this happens when G is (i) a Hamiltonian graph with maximum degree at most 3,

(ii) a complete graph, or (iii) an arbitrarily traceable graph. Further related questions

and open problems will be stated.

Joint work with M. Abreu, John Baptist Gauci, Giuseppe Mazzuoccolo and Jean Paul

Zerafa.

39



Intersection Distribution and Its Application

Shuxing Li

Simon Fraser University

Given a polynomial f over finite field Fq, its intersection distribution concerns the

collective behaviour of a series of polynomials {f(x) + cx|c ∈ Fq}. Each polynomial f

canonically induces a (q + 1)-set Sf in the classical projective plane PG(2, q) and the

intersection distribution of f reflects how the point set Sf interacts with the lines in

PG(2, q).

Motivated by the long-standing open problem of classifying oval monomials, which are

monomials over F2m having the same intersection distribution as x2, we consider the next

simplest case: classifying monomials over Fq having the same intersection distribution as

x3. Some characterizations of such monomials are derived and consequently a conjectured

complete list is proposed.

Among the conjectured list, we identify two exceptional families of monomials over

F3m . Interestingly, new examples of Steiner triple systems follow from them, which are

nonisomorphic to the classical ones.

This is joint work with Gohar Kyureghyan and Alexander Pott.
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Cameron-Liebler line classes in AG(3, q)

Jonathan Mannaert

Vrije Universiteit Brussel, Belgium.

Cameron-Liebler (CL) line classes were first observed by Cameron and Liebler to classify

certain subgroup structures in PG(3, q). A CL line class L is characterized by the property

that for every line spread S it holds that |L ∩ S| = x. This fixed number x ∈ N is

called the parameter of L. The goal of this talk is to consider CL line classes L and its

properties in AG(3, q), see [2], with a similar definition as in PG(3, q). Because AG(3, q)

has significantly more line spreads then PG(3, q), a CL line class in AG(3, q) is actually a

special type of CL line class in PG(3, q). This will induce the inherence of many properties

for CL line classes in PG(3, q). One of these properties is a non-existence condition based

on the modular equality obtained in [4], which allows us to calculate an upper bound on

the possible parameters x of a CL line class in AG(3, q). A second important consequence

is the existence of a CL line class of parameter x = q2−1
2

in AG(3, q), for q ≡ 5 or 9

mod 12. This example will be based on the example found in [1] and [3]. These results

will imply a classification of the parameters of a Cameron-Liebler line class in AG(3, q),

q ≤ 5.

Joint work with Jozefien D’haeseleer, Leo Storme and Andrea Švob.

[1] Jan De Beule, Jeroen Demeyer, Klaus Metsch, and Morgan Rodgers. A new family of

tight sets in Q+(5, q). Des. Codes Cryptogr., 78(3):655–678, 2016.

[2] Jozefien D’haeseleer, Jonathan Mannaert, Leo Storme, and Andrea Švob. Cameron-

Liebler line classes in AG(3, q). Finite Fields Appl., 67:101706, 2020.

[3] Tao Feng, Koji Momihara, and Qing Xiang. Cameron-Liebler line classes with param-

eter x = q2−1
2

. J. Combin. Theory Ser. A, 133:307–338, 2015.

[4] Alexander L. Gavrilyuk and Klaus Metsch. A modular equality for Cameron-Liebler

line classes. J. Combin. Theory Ser. A, 127:224–242, 2014.
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Eigenvalues of oppositeness graphs and Erdős-Ko-Rado for flags

Sam Mattheus

Vrije Universeit Brussel

Over the last few years, Erdős-Ko-Rado theorems have been found in many different

geometrical contexts including for example sets of subspaces in projective or polar spaces.

A recurring theme throughout these theorems is that one can find sharp upper bounds

by applying the Delsarte-Hoffman coclique bound to a matrix belonging to the relevant

association scheme. In the aforementioned cases, the association schemes turn out to

be commutative, greatly simplifying the matter. However, when we do not consider

subspaces of a certain dimension but more general flags, we lose this property. In this

talk, we will explain how to overcome this problem, using a result originally due to

Brouwer. This result, which has seemingly been flying under the radar so far, allows us

to find eigenvalues of oppositeness graphs and derive sharp upper bounds for EKR-sets

of certain flags in projective spaces and general flags in polar spaces and exceptional

geometries. We will show how Chevalley groups, buildings, Iwahori-Hecke algebras and

representation theory tie into this story and discuss their connections to the theory of

non-commutative association schemes.

Joint work with Jan De Beule and Klaus Metsch.
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Completely regular codes in Johnson and Grassmann graphs with small

covering radii

Ivan Mogilnykh

Sobolev Institute of Mathematics, Novosibirk, Russia

Let C be a code (a collection of vertices) in a regular graph Γ. A vertex x is in Ci

if the minimum of the distances between x and the vertices of C is i. The maximum of

these distances is called the covering radius of C and is denoted by ρ. A code C is called

completely regular if there are numbers α0, . . . , αρ, β0, . . . , βρ−1, γ1, . . . , γρ such that for

every i ∈ {0, . . . , ρ} any vertex of Ci is adjacent to exactly αi, βi and γi vertices of Ci−1,

Ci and Ci+1 respectively.

Let L be a 2-spread in PG(n−1, q) (i.e. 1−(n, 2, 1)q–design). This code is known to be

completely regular in the Grassmann graph Jq(n, 2) [1,Corollary 3.5] with covering radius

1. For fixed k, k ≥ 3 consider the code D of k-subspaces, which do not contain subspaces

from L. When k is 3 this code is completely regular in Jq(n, 3) [2]. Our result is that if

k is 4 and L is a Desarguesian spread then the code D is completely regular in Jq(n, 4)

with covering radius 2. In a similar manner we construct a completely regular code in

the Johnson graph J(n, 6) from the affine Steiner quadruple system of order n = 2m. We

also obtain several new completely regular codes with covering radius 1 in the Grassmann

graph J2(6, 3) using binary linear programming. A detailed description of these results

with proofs could be found in [3].

[1] W.J. Martin, Completely regular designs, J. Combin. Des. 4 (1998) 261–273.

[2] S. De Winter, K. Metsch, Perfect 2-Colorings of the Grassmann Graph of Planes,

Electronic Journal of Combinatorics, Volume 27, Issue 1, P1.21 (2020).

[3] Ivan Mogilnykh, Completely regular codes in Johnson and Grassmann graphs with

small covering radii, https://arxiv.org/abs/2012.06970.
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On flag-transitive symmetric 2-(v, k, λ) designs

Alessandro Montinaro

University of Salento

In literature there are many papers devoted to the study of symmetric 2-(v, k, λ)

designs D = (P ,B) admitting a flag-transitive automorphism group G. If λ = 1, then

G acts point-primitively on D, and both D and G are essentially classified by Kantor

(1985). The case λ > 1 is different: it is far from being settled and there are several

examples of 2-designs admitting a flag-transitive, point-imprimitive automorphism group.

In the latter case, if G acts point-primitively on D, remarkable results were obtained by

O’Reilly-Reguerio (2005) for λ = 2, Zhou et al. (2010) for λ = 3, 4, by Braić et al. (2011)

for v < 2500, by Biliotti and Montinaro (2016) and by Alavi, Zhou et al. (2021) for

gcd(k, v) = 1. If G acts point-imprimitively on D, then Praeger and Zhou (2006) have

shown that each line of D intersects any block of imprimitivity either in 0 or in a constant

number x of points, x ≥ 2. Moreover, either k ≤ λ(λ − 3)/2 or the parameters of D are

determined as a function of λ.

The aim of this talk is to provide an approach to determine D for k > λ(λ− 3)/2 and

x > 2. More precisely we show that, for x > 2 the incidence structure D0 = (P0,B0),

where P0 is a block of imprimitivity for G on P and B0 = {P0 ∩ ` 6= ∅ : ` ∈ B}, is a

2-design admitting GP0
P0

as a flag-transitive automorphism group. Also, the group GP0
P0

acts point-primitively on D for k > λ(λ − 3)/2. This allows to classify D0 and hence to

determine strong constraints for the structure of D.
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Distance-regular graphs from the Mathieu groups

Nina Mostarac

Department of Mathematics, University of Rijeka, Rijeka, Croatia

In this talk we will describe a construction of distance-regular graphs admitting a

transitive action of the five Mathieu groups M11, M12, M22, M23 and M24. We will

also discuss a possibility of permutation decoding of the codes spanned by the adjacency

matrices of the graphs constructed and find small PD-sets for some of the codes.

Joint work with Dean Crnković and Andrea Švob.
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On extremal self-dual Z4-codes

Matteo Mravić

Department of Mathematics, University of Rijeka

A linear Z4-code C of length n is a Z4 sub-module of Zn4 . With respect to the standard

inner product modulo 4, the dual code C⊥ of the Z4-code C is defined. The code C is

self-dual if C ⊆ C⊥. There are two binary codes associated with a Z4-code C called a

residue code and a torsion code. These two codes are a starting point in the construction

of self-dual Z4-codes by the method given in [1]. For Z4-codes the Euclidean weight of

codeword x is defined by n1(x)+4n2(x)+n3(x), where ni(x) is the number of components

of x which are equal to i. A Z4-code C of length n is said to be extremal if its minimal

Euclidean weight is 8b n
24
c+8. In this talk, we will discuss an algorithm that improves the

search for extremal self-dual Z4-codes which we used to obtain some new extremal codes.

This is joint work with Sanja Rukavina.

[1] V. Pless, J. S. Leon, J. Fields, All Z4 Codes of Type II and Length 16 Are Known,

Journal of Combinatorial Theory, Series A 78, 32-50, 1997.

[2] S. Ban, D. Crnković, M. Mravić, S. Rukavina, New extremal Type II Z4-codes of

length 32 obtained from Hadamard matrices, Discrete Mathematics, Algorithms and

Applications, 11, 2019.
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A Combinatorial Approach to Flag Codes

Miguel Ángel Navarro-Pérez

Department of Mathematics, University of Alicante

03080, Alicante (Spain).

In network coding, a flag code is a collection of sequences of nested subspaces of Fnq ,

being Fq the finite field with q elements. This family of codes was first introduced in [?].

Even though flag codes can be seen as a generalization of subspace codes, their distance

is a much more complex parameter than the subspace distance. In this talk we present

a combinatorial approach to flag codes by means of which we can interpret the possible

realizations of a flag code distance value as different partitions of an appropriate integer.

This viewpoint allows us to extract information about the flag code in terms of well-know

concepts coming from the classical theory of partitions.

Joint work with Clementa Alonso-Gonzlez.
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A family of non-Cayley cores that is constructed from vertex-transitive or

strongly regular self-complementary graphs

Marko Orel

University of Primorska & IMFM

Let Γ be a finite simple graph on n vertices. In the talk I will consider the graph

Γ ≡ Γ̄ on 2n vertices, which is obtained as the disjoint union of Γ and its complement

Γ̄, where we add a perfect matching such that each its edge joins two copies of the same

vertex in Γ and Γ̄. The graph Γ ≡ Γ̄ generalizes the Petersen graph, which is obtained

if Γ is the pentagon. It is a non-Cayley graph if n > 1, and is vertex-transitive if and

only if Γ is vertex-transitive and self-complementary. In this case Γ ≡ Γ̄ is Hamiltonian-

connected whenever n > 5. It is shown that the fraction between the cardinalities of

the automorphism groups of Γ ≡ Γ̄ and Γ can attain only values 1, 2, 4, or 12, and the

corresponding four classes of graphs are described. The spectrum of the adjacency matrix

of Γ ≡ Γ̄ is computed whenever Γ is regular. The main results involve the endomorphisms

of Γ ≡ Γ̄. It is shown that the graph Γ ≡ Γ̄ is a core, i.e. all its endomorphisms are

automorphisms, whenever Γ is strongly regular and self-complementary. The same result

is obtained for many cases, where Γ is vertex-transitive and self-complementary.

48



Small complete caps in PG(4n+ 1, q)

Francesco Pavese

Polytechnic University of Bari

Let PG(r, q) denote the r-dimensional projective space over the finite field with q

elements Fq. A k-cap of PG(r, q) is a set of k points no three of which are collinear. A

k-cap of PG(r, q) is said to be complete if it is not contained in a (k+ 1)-cap of PG(r, q).

The study of caps is not only of geometrical interest, but arises from coding theory.

Indeed, by identifying the representatives of the points of a complete k-cap of PG(r, q)

with columns of a parity check matrix of a q–ary linear code, it follows that (apart from

three sporadic exceptions) complete k-caps of PG(r, q) with k > r+1 and non-extendable

linear [k, k − r − 1, 4]q 2–codes are equivalent objects.

One of the main issue is to determine the spectrum of the sizes of complete caps in

a given projective space and in particular their maximal and minimal possible values.

For the size t2(r, q) of the smallest complete cap in PG(r, q), the trivial lower bound is

t2(r, q) >
√

2q
r−1
2 . Apart from the cases q even and r odd, all known infinite families of

complete caps explicitly constructed in PG(r, q) have size far from the trivial bound.

In this talk I will describe the construction of a complete cap of PG(4n+ 1, q) of size

2(q2n+· · ·+1) that is obtained by projecting two disjoint Veronese varieties of PG(n(2n+

3), q) from a suitable (2n2 − n − 2)-dimensional projective space. This establishes that

the trivial lower bound on t2(4n+ 1, q) is essentially sharp.

This is joint work with A. Cossidente, B. Csajbók and G. Marino.
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Perfect 1-Factorisations

David Pike

Memorial University of Newfoundland

A matching in a graph G is a subset M ⊆ E(G) of the edge set of G such that no two

edges of M share a vertex. A 1-factor of a graph G is a matching F in which every vertex

of G is in one of the edges of F . If G is a ∆-regular graph of even order then we can ask

whether G admits a 1-factorisation, namely a partition of its edge set into ∆ 1-factors.

Suppose that F1, F2, . . . , F∆ are the 1-factors of a 1-factorisation F of a ∆-regular

graph G. If, for each 1 ≤ i < j ≤ ∆, the union Fi ∪ Fj is the edge set of a Hamilton

cycle in G, then we say that F is a perfect 1-factorisation of G. We will discuss some of

the history and properties of 1-factorisations, including the recent discovery of a perfect

1-factorisation of K56.
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New methods to attack the Buratti-Horak-Rosa conjecture

John R. Schmitt

Middlebury College, Vermont, USA

The conjecture, still widely open, posed by Marco Buratti, Peter Horak and Alex Rosa

states that a list L of v − 1 positive integers not exceeding
⌊
v
2

⌋
is the list of edge-lengths

of a suitable Hamiltonian path of the complete graph with vertex-set {0, 1, . . . , v − 1} if

and only if, for every divisor d of v, the number of multiples of d appearing in L is at most

v − d. We present new methods that are based on linear realizations that can be applied

to prove the validity of this conjecture for a vast choice of lists. As example of their

flexibility, we consider lists whose underlying set is one of the following: {x, y, x + y},
{1, 2, 3, 4}, {1, 2, 4, . . . , 2x}, {1, 2, 4, . . . , 2x, 2x + 1}. We also consider lists with many

consecutive elements.

Joint work with Matt Ollis (Emerson College, MA), Anita Pasotti (Università degli

Studi di Brescia, Italy), and Marco Pellegrini (Università Cattolica del Sacro Cuore, Italy).
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Bounds on permutation designs

Patrick Solé

I2M, Marseilles, France

A notion of t-designs in the symmetric group on n letters was introduced by Godsil

in 1988. In particular t-transitive sets of permutations are t-designs. We derive special

lower bounds for t = 1 and t = 2 by a power moment method. For general n, t we give a a

lower bound on the size of such t-designs of n(n− 1) . . . (n− t+ 1), which is best possible

when sharply t-transitive sets of permutations exist. This shows, in particular, that tight

2-designs do not exist.

Joint work with Minjia Shi, and Xiaoxiao Li.
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Reed – Muller like codes and their intersections

Faina Solov’eva

Sobolev Institute of Mathematics, Novosibirsk, Russia

sol@math.nsc.ru

The classical binary Reed – Muller code of order r, 0 ≤ r ≤ m, for any m ≥ 1 is

defined as the set of all vectors of length 2m corresponding to the boolean functions of

m variables of degree not more than r. The Reed – Muller code is linear and has the

following parameters: the length n of the code is 2m, the size 2k, k =
∑r

i=0

(
m
i

)
and the

code distance (the minimum value of the Hamming distance between any two different

codewords from the code) is 2m−r.

The code is called self-complementary if for any codeword x the code contains the

vector x+ 1n, where 1n is the all-one vector of length n. The Reed – Muller code is self-

complementary. A binary self-complementary code with the parameters of the classical

Reed – Muller code is called a Reed – Muller like code. Such code is not necessarily linear.

The class of the Reed – Muller like codes contains a rich families of codes obtained in

[1]–[3].

We prove that there exist two Reed – Muller like codes of order r of length 2m with

the intersection number equaled 2η1η2, where 1 ≤ ηs ≤ |RM(r− 1,m− 1)|, s ∈ {1, 2} for

any admissible length beginning with 16. The result generalizes the result [4] concerning

the intersection problem for perfect binary codes.

[1] A. K. Pulatov, Lower bound on a complexity of the circuit implementation for one

class of codes. Diskretn. Analiz, Novosibirsk. V. 25 (1974) 56–61 (in Russian).

[2] C. L. Liu, B. G. Ong, G. R. Ruth, A construction scheme for linear and non-linear

codes. Discrete Math. V. 4 (1973) 171–184.

[3] F. I. Solov’eva, On binary non-group codes, Metody Diskretn. Anal. V. (1981)

65–76 (in Russian).

[4] S. V. Avgustinovich, O. Heden, F. I. Solov’eva, On intersections of perfect binary

codes. Bayreuther Mathematische Schriften. V. 71 (2005) 8–13.
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Restrictions on parameters of partial difference sets in nonabelian groups

Eric Swartz

Department of Mathematics

William & Mary

Williamsburg, VA, USA

easwartz@wm.edu

A partial difference set S in a finite group G satisfying 1 /∈ S and S = S−1 corre-

sponds to an undirected strongly regular Cayley graph Cay(G,S). While the case when

G is abelian has been thoroughly studied, there are comparatively few results when G

is nonabelian. We provide restrictions on the parameters of a partial difference set that

apply to both abelian and nonabelian groups and are especially effective in groups with

a nontrivial center. In particular, these results apply to p-groups, and we are able to rule

out the existence of partial difference sets in many instances.

This is joint work with Gabrielle Tauscheck.
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Marina Šimac

On some LDPC codes

Department of Mathematics - University of Rijeka, Rijeka, Croatia

Low-density parity-check (LDPC) codes are a class of linear block codes that were first

presented by Gallager in 1962. These codes have been the subject of much interest due

to the fact that they can perform near Shannon limit. In this talk we study low-density

parity-check (LDPC) codes having cubic semisymmetric graphs as their Tanner graphs.

We will discuss some of the properties of the constructed codes and present bounds for the

code parameters: code length, dimension and minimum distance. Moreover, information

on the constructed codes, such as computational and simulation results, will be presented.

Joint work with Dean Crnković and Sanja Rukavina.
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On Automorphisms of a binary Fano plane

Kristijan Tabak

Rochester Institute of Technology, Zagreb Campus

The existence of a binary q-analog of a Fano plane is still unknown. Kiermaier, Kurz

and Wassermann proved that it’s automorphism group is almost trivial. Namely, it con-

tains at most two elements. The method used there involved Kramer - Masner method

together with an extensive computer search. In this talk we provide an algebraic (com-

puter free) proof that automorphisms of certain order can’t do action on a binary q-analog

of a Fano plane.
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On abelian distance-regular covers of complete graphs related to rank 3

permutation groups

Ludmila Tsiovkina

Krasovky Institute of Mathematics and Mechanics, Yekaterinburg, Russia

l.tsiovkina@gmail.com

A distance-regular antipodal cover of the complete graph Kn is equivalently defined as

a connected graph, whose vertex set admits a partition into n (antipodal) classes of the

same size r ≥ 2 such that each class induces an r-coclique, the union of any two distinct

classes induces a perfect matching, and any two non-adjacent vertices that lie in distinct

classes have exactly µ ≥ 1 common neighbours; such a graph is briefly referred to as an

(n, r, µ)-cover. An (n, r, µ)-cover is called abelian if the group of all its automorphisms

fixing (setwise) every its antipodal class is abelian and acts regularly on every antipodal

class of the cover. The study of abelian (n, r, µ)-covers is motivated by their various appli-

cations, e.g. in coding theory and discrete geometry. The aim of this talk is to investigate

abelian (n, r, µ)-covers Γ with the following property: there is a vertex-transitive group

of automorphisms G of Γ which induces an almost simple primitive permutation group

GΣ on the set Σ of antipodal classes of Γ. Such covers have been classified in the case

when the permutation rank rk(GΣ) of GΣ equals 2. We will present some recent results

on classification of such covers in the case rk(GΣ) = 3.

Acknowledgement. This research was supported by the Russian Science Foundation

under grant no. 20-71-00122.
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Quasi-symmetric 2-(28, 12, 11) designs with an automorphism of order 5

Renata Vlahović Kruc

Department of Mathematics, Faculty of Science, University of Zagreb,

Bijenička cesta 30, HR-10000 Zagreb, Croatia

A t-(v, k, λ) design is quasi-symmetric if any two blocks intersect in either x or y points,

for non-negative integers x < y. The first known quasi-symmetric 2-(28, 12, 11) designs

with intersection numbers x = 4 and y = 6 were constructed as derived designs of

the symplectic symmetric 2-(64, 28, 12) design [3]. There are four non-isomorphic SDP

designs (designs with the symmetric difference property) with parameters 2-(64, 28, 12).

Derived designs any of them are quasi-symmetric 2-(64, 28, 12) designs [2]. In [1], designs

with these parameters were classified with an automorphism of order 7 without fixed

points and blocks; there are exactly 246 such designs. Furthermore, in [4] the number of

quasi-symmetric 2-(28, 12, 11) designs was increased to 58 891.

Using a method based on tactical decompositions, we classified quasi-symmetric 2-

(28, 12, 11) designs with an automorphism of order 5. Up to isomorphism, there are

exactly 31 696 such designs.

This is joint work with Vedran Krčadinac.

[1] Y. Ding, S. Houghten, C. Lam, S. Smith, L. Thiel, and V. D. Tonchev, Quasi-

symmetric 2-(28, 12, 11) designs with an automorphism of order 7, J. Combin. Des.

6 (1998), no. 3, 213–223.

[2] D. Jungnickel, V. D. Tonchev, On symmetric and quasi-symmetric designs with the

symmetric difference property and their codes, J. Combin. Theory Ser. A 59 (1992),

no. 1, 40–50.

[3] W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33

(1975), 43–58.

[4] V. Krčadinac, R. Vlahović, New quasi-symmetric designs by the Kramer-Mesner

method, Discrete Math. 339 (2016), no. 12, 2884–2890.
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A Hermitian adjacency matrix for Signed Directed Graphs

Pepijn Wissing

p.wissing@tilburguniversity.edu

Tilburg University

The field of signed directed graphs, which is a natural marriage of the well-known

fields concerning signed graphs and directed graphs, has thus far received little attention.

To characterize such signed directed graphs, we formulate a Hermitian adjacency matrix,

whose entries are the unit Eisenstein integers exp(kπi/3), k ∈ Z6.

Our main interest is spectral characterization. To this end, we provide a full classi-

fication of all signed digraphs with rank at most 3, and an extensive review of signed

digraphs with at most 2 non-negative eigenvalues. We show that non-empty signed di-

rected graphs whose spectra occur uniquely, up to isomorphism, do not exist, but we use

the provided classification to provide several infinite families whose spectra occur uniquely

up to (diagonal) switching equivalence.

Based on joint work with Edwin van Dam.
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On the non-existence of srg(85,14,3,2) and the Euclidean representation

Tianxiao Zhao

TXZ955@student.beam.ac.uk

University of Birmingham

In general, it is still an open question to determine whether a strongly regular graph

with given parameters exists. In this talk I will introduce our approach proving the non-

existence of srg(85,14,3,2): how we treat a strongly regular graph as a distance regular

graph and its corresponding association scheme, how the Euclidean representation of a

graph works, and our current progress on this problem.

This is a joint work with Professor Sergey Shpectorov.
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S(2, 5, 45) designs constructed from orbit matrices using a modified genetic

algorithm

Tin Zrinski

tin.zrinski@math.uniri.hr

Genetic algorithms (GA) are search and optimization heuristic population-based meth-

ods which are inspired by the natural evolution process. In this talk, we will present a

method of constructing incidence matrices of block designs combining the method of con-

struction with orbit matrices and a modified genetic algorithm. With this method we

managed to find some new non-isomorphic S(2,5,45) designs.

Joint work with Dean Crnković.
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The geometric counterpart of maximum rank metric codes

Ferdinando Zullo

Dipartimento di Matematica e Fisica

Università degli Studi della Campania “Luigi Vanvitelli”, Italy

The set of m × n matrices Fm×nq over Fq is a metric space with rank metric distance

defined by d(A,B) = rk(A − B) for A,B ∈ Fm×nq . A subset C ⊆ Fm×nq is called rank

metric code. The minimum distance of C is defined as

d(C) = min
A,B∈C, A6=B

{d(A,B)}.

When C is an Fq-linear subspace of Fm×nq , we say that C is an Fq-linear rank metric

code and the dimension dimq(C) is defined to be the dimension of C as a subspace over

Fq.
The Singleton bound for an m × n rank metric code C with minimum rank distance

d, proved by P. Delsarte in [3] and by E. Gabidulin in [4], is

#C ≤ qmax{m,n}(min{m,n}−d+1).

If this bound is achieved, then C is called an MRD-code. Such codes have received great

attention in recent years for their applications in cryptography and coding theory.

J. Sheekey in [6] opened a new perspective in the theory of MRD-codes: he proved

that scattered Fq-linear sets of PG(1, qn) of maximum rank n yield Fq–linear MRD-codes

with dimension 2n and minimum distance n− 1.

More generally, a linear set can be defined as follows. Let V = V (r, qn), Λ =

PG(V,Fqn) = PG(r − 1, qn), q = ph for some prime p. A pointset L of Λ is an Fq-linear

set of Λ of rank k if L consists of the points defined by the vectors of an Fq-subspace U

of V of dimension k, i.e.

L = LU = {〈u〉Fqn : u ∈ U \ {0}}.

For the number of points of an Fq-linear set of rank k the following bound holds

|LU | ≤
qk − 1

q − 1
,

and the Fq-linear sets achieving this bound are called scattered, see [1]. Equivalently, it

is possible to define scattered linear sets through the definition of the weight of a point.

Let Ω = PG(W,Fqn) be a subspace of Λ and let LU be an Fq-linear set of Λ, then if

dimFq(W ∩U) = i, we say that Ω has weight i in LU , and we write wLU (Λ) = i. Hence, a

scattered Fq-linear set can be defined as an Fq-linear set with the property that all of its
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points have weight one. In [2] the scattered property has been generalized by replacing

points with subspaces of fixed dimension. More precisely, the Fq-linear sets of Λ with the

property that

wLU (Ω) ≤ h

for each (h − 1)-subspace Ω of Λ and 〈LU〉Fqn = Λ are called h-scattered Fq-linear sets.

It turns out that h-scattered Fq-linear sets are scattered linear sets. Also, 1-scattered

Fq-linear sets coincide with the classical scattered linear sets generating the whole space

defined above. The case h = r − 1 was also considered in [5, 7]. In [2] it was proved that

for any h the rank of a h-scattered Fq-linear set is bounded by rn/(h + 1) and examples

of h-scattered linear sets whose rank attain this bound were given.

In this talk we will give a gentle introduction to the theory of h-scattered linear sets and

we will deal with their connection with MRD-codes, extending the connection established

in [6].

Joint work with Bence Csajbók, Giuseppe Marino, Vito Napolitano, Olga Polverino

and Giovanni Zini.

[1] A. Blokhuis and M. Lavrauw: Scattered spaces with respect to a spread in

PG(n, q), Geom. Dedicata 81 (2000), 231–243.

[2] B. Csajbók, G. Marino, O. Polverino and F. Zullo: Generalising the scat-

tered property of subspaces, Combinatorica 41(2) (2021): 237–262.

[3] P. Delsarte: Bilinear forms over a finite field, with applications to coding theory,

J. Combin. Theory Ser. A 25 (1978), 226–241.

[4] E. Gabidulin: Theory of codes with maximum rank distance, Problems Inform.

Transmission, 21(3) (1985), 3–16.

[5] G. Lunardon: MRD-codes and linear sets, J. Combin. Theory Ser. A 149 (2017),

1–20.

[6] J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math.

Commun. 10 (3) (2016), 475–488.

[7] J. Sheekey and G. Van de Voorde: Rank-metric codes, linear sets and their

duality, Des. Codes Cryptogr. 88 (2020), 655-675.
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106. P. Ó Catháin, Worcester Polytechnic Institute, MA, United States

107. R. dela Cruz University of the Philippines Diliman, Philippines

108. M. Ollis, Emerson College, United States

109. M. Orel, University of Primorska & IMFM, Slovenia

110. O. Paez Osuna, Ronin Institute for Independent Scholarship, United States
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154. R. Vlahović Kruc, Faculty of Science, University of Zagreb, Croatia

155. A. Wassermann, University of Bayreuth, Germany

156. C. Weiß, Paderborn University, Germany

67



157. P. Wissing, Tilburg University, The Netherlands

158. S. Zeijlemaker, Eindhoven University of Technology, The Netherlands

159. T. Zhao, University of Birmingham, United Kingdom

160. Y. Zhou, National University of Defense Technology, China

161. L. Zou, National University of Ireland, Galway, Ireland

162. T. Zrinski, University of Rijeka, Croatia
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