Abstract

Intersection Distribution and Its Application

Shuxing Li

Simon Fraser University

Given a polynomial f over finite field \mathbb{F}_q , its intersection distribution concerns the collective behaviour of a series of polynomials $\{f(x) + cx | c \in \mathbb{F}_q\}$. Each polynomial f canonically induces a (q+1)-set S_f in the classical projective plane PG(2,q) and the intersection distribution of f reflects how the point set S_f interacts with the lines in PG(2,q).

Motivated by the long-standing open problem of classifying oval monomials, which are monomials over \mathbb{F}_{2^m} having the same intersection distribution as x^2 , we consider the next simplest case: classifying monomials over \mathbb{F}_q having the same intersection distribution as x^3 . Some characterizations of such monomials are derived and consequently a conjectured complete list is proposed.

Among the conjectured list, we identify two exceptional families of monomials over \mathbb{F}_{3^m} . Interestingly, new examples of Steiner triple systems follow from them, which are nonisomorphic to the classical ones.

This is joint work with Gohar Kyureghyan and Alexander Pott.