Abstract On extremal self-dual \mathbb{Z}_4 -codes

Matteo Mravić

Department of Mathematics, University of Rijeka

A linear \mathbb{Z}_4 -code C of length n is a \mathbb{Z}_4 sub-module of \mathbb{Z}_4^n . With respect to the standard inner product modulo 4, the dual code C^{\perp} of the \mathbb{Z}_4 -code C is defined. The code C is self-dual if $C \subseteq C^{\perp}$. There are two binary codes associated with a \mathbb{Z}_4 -code C called a residue code and a torsion code. These two codes are a starting point in the construction of self-dual \mathbb{Z}_4 -codes by the method given in [1]. For \mathbb{Z}_4 -codes the Euclidean weight of codeword x is defined by $n_1(x) + 4n_2(x) + n_3(x)$, where $n_i(x)$ is the number of components of x which are equal to i. A \mathbb{Z}_4 -code C of length nis said to be extremal if its minimal Euclidean weight is $8\lfloor \frac{n}{24} \rfloor + 8$. In this talk, we will discuss an algorithm that improves the search for extremal self-dual \mathbb{Z}_4 -codes which we used to obtain some new extremal codes.

This is joint work with Sanja Rukavina.

References

- V. Pless, J. S. Leon, J. Fields, All Z₄ Codes of Type II and Length 16 Are Known, Journal of Combinatorial Theory, Series A 78, 32-50, 1997.
- [2] S. Ban, D. Crnković, M. Mravić, S. Rukavina, New extremal Type II Z₄-codes of length 32 obtained from Hadamard matrices, Discrete Mathematics, Algorithms and Applications, 11, 2019.