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Set Systems and Steiner Systems

I (Uniform) Set system of type (v , k):

I a set V of v points or elements
I a collection B of k -subsets of V , called blocks

I Regular set system of type (v , k , r):

I a set system of type (v , k) so that every point is in
exactly r blocks.

I Steiner system S(t , k , v):

I a regular set system of type (v , k , (
v−1
t−1)
(k−1

t−1)
), (V ,B), for

which each t-subset T ⊆ V satisfies T ⊆ B for
exactly one B ∈ B.
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Set Systems and Steiner Systems

I Uniform set systems, regular set systems, and Steiner
systems — and their duals — have been extensively
applied in coding theory, communications, experimental
design, etc. etc. — and in access and load balancing for
storage systems.
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The General Problem

I Use a (regular, uniform) set system to associate data
items (points) to storage units (blocks), so that accesses
to storage units are balanced.

I Because in a regular set system, every point is in the
same number of blocks, and every block contains the
same number of points, they achieve the “balance” that
we want!

I Or do they? Not all data items have the same long-term
frequency of access, or popularity.
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The General Problem
Popularity

I Dau and Milenkovic (2018) suggest ranking the data items
by popularity, ordering the data items from most to least
popular.

I Placing a total ordering on the points and a total ordering
on the blocks leads to a unique incidence matrix for the
Steiner (or set) system.
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The Sum Metrics
Primal

I Let A = (aij) be a n ×m incidence matrix.

I For each column 0 ≤ j < m, define the weighted column
sum (block sum) σj to be

n−1∑
i=0

i · aij

I Then define

MinSum(A) = min(σj : 0 ≤ j < m}
MaxSum(A) = max(σj : 0 ≤ j < m}
DiffSum(A) = MaxSum(A)−MinSum(A).
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The Sum Metrics
Primal

I Goals: Order the rows of A (i.e., the points of the
underlying set system) to achieve

I large MinSum
I small MaxSum
I small DiffSum
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The Sum Metrics
Dual

I Let A = (aij) be a n ×m incidence matrix.

I Transpose A and consider sum metrics for AT.

I This gives point sums for A, and we focus on ordering the
blocks of A.
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The Sum Metrics
Dual

I Goals: Order the columns of A (i.e., the blocks of the
underlying set system, or the rows of AT) to achieve

I large (dual) MinSum
I small (dual) MaxSum
I small (dual) DiffSum
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Example S(3,4,10) – Regular of type
(10,4,12)
One incidence matrix A1

111111110000011110000000000000
111000001111110000000011100000
100110000100101001110001011000
100001010011000101010110001010
001011001000100010011110010001
001000110110001000111000100011
010100010001100010101100101100
010010101010000101100101000101
000101101101010001001000010110
000000000000011110000011111111

MinSum(A1) = 6, MaxSum(A1) = 30, DiffSum(A1) = 24
MinSum(AT

1) = 86, MaxSum(AT
1) = 262, DiffSum(AT

1) = 176
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Example S(3,4,10)
Another incidence matrix A2

000111010010000011010111000100
010100010011101000100100110010
110000110001000111001000001110
010010001110000101111000100001
101100000001011010011001100001
111000001100001000010110011100
100101101000010001100010010011
001011001000110110000100101010
000010110100111000101011001000
001001100111100100000001010101

MinSum(A2) = 11, MaxSum(A2) = 25, and DiffSum(A2) = 14
MinSum(AT

2) = MaxSum(AT
2) = 174, and DiffSum(AT

2) = 0
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The Questions

I The sum metrics for a specific incidence matrix are easily
calculated.

I Can we optimize each metric over all incidence matrices
for a specified set system?

I Can we optimize each metric over all incidence matrices
for all (uniform, regular, or Steiner) set systems having the
same parameters?
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Reversal

I Suppose that A is a regular set system of type (v , k , r),
with MinSum m and dual MinSum d .

I Reverse the ordering of the columns and the ordering of
the rows to get an incidence matrix R.

I Then R has MaxSum k(v − 1)−m and dual MaxSum
r(b − 1)− d .

I And vice versa. So we can focus on MInSum to
understand MaxSum.

I But be careful! Although DiffSum is MaxSum minus
MinSum, this is for a specific incidence matrix, and it may
happen that no incidence matrix with largest MinSum can
also have smallest MaxSum.
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How bad can labellings be?
Naive bounds

I In an S(t , k , v) having two disjoint blocks, labelling the
points of one with {0, . . . , k − 1} and of the second with
{v − k , . . . , v − 1}, one gets MinSum

(k
2

)
, MaxSum

k(v − k) +
(k

2

)
and DiffSum k(v − k) — and these are the

worst possible.

I Similarly labelling all blocks containing a particular point
with {0, . . . , r − 1} yields dual MinSum

(r
2

)
, and its

reversal has dual MaxSum r(b − r) +
(r

2

)
— and these are

the worst possible.

I But we cannot get both at the same time! Indeed, for
λ2 =

(v−2
t−2

)
, the worst dual DiffSum is (r − λ2)(b − r + λ2).
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Some easy counting
Primal

I Consider a regular set system of type (v , k , r).

I It must have b = vr
k blocks.

I The total block sum is

r
v−1∑
i=0

i = r
(

v
2

)

I The average block sum is

r
b

(
v
2

)
=

1
2

k(v − 1)

I an upper bound on MinSum

I a lower bound on MaxSum
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More easy counting
Dual

I Consider a regular set system of type (v , k , r).

I It must have b = vr
k blocks.

I The total point sum is

k
b−1∑
i=0

i = k
(

b
2

)

I The average point sum is

k
v

(
b
2

)
=

1
2

r(b − 1)

I an upper bound on dual MinSum

I a lower bound on dual MaxSum
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A primal bound

I Consider an S(t , k , v). It has average block sum
1
2 k(v − 1).

I Now choose a set of points X = {x1, . . . , xt−1}. Let C be
the blocks that contain all points of X . Form the derived
set system D with respect to X .

I D has v−t+1
k−t+1 blocks, each of size k − t + 1, that partition

{0, . . . , v − 1} \ X .

I The average block sum of a block in D is

k − t + 1
v − t + 1

v−1∑
i=0

i −
t−1∑
j=1

xi
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A primal bound
still

I Choose X = {0, . . . , t − 2}.
I The average block sum of a block in C is(

t − 1
2

)
+

k − t + 1
v − t + 1

[
(t − 1)(v − t + 1) +

(
v − t + 1

2

)]
I The average block sum of a block in C is(

t − 1
2

)
+

(k − t + 1)(v + t − 2)
2
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The Basic Bound
Primal

MinSum ≤ MaxSum ≥ DiffSum ≥

t = 2 (k−1)v
2

(k+1)v−2k
2 v − k

t = 3 (k−2)v+k+4
2

(k+2)v−3k−4
2 2(v − k)− 4

t = 4 (k−3)v+2k+6
2

(k+3)v−4k−6
2 3(v − k)− 6

...



Double Double Toil
and Trouble

Charles J.
Colbourn

Arizona State
University

The Current Landscape
Steiner triple systems S(2, 3, v)

I There exists an S(2,3, v) with MinSum equal to v , the
largest possible. (DM18).

I For v sufficiently large, some S(2,3, v) has MinSum at
most c log v (CCDGLLM20)

I Every S(2,3, v) has DiffSum at least v when v ≥ 7
(DM18), at least v + 1 when v ≥ 13 (CCDGLLM20)

I For every admissible v ≥ 13, there exists an S(2,3, v)
with DiffSum at most v + 7 (CCDGLLM20)

I For infinitely many admissible v ≥ 13, there exists an
S(2,3, v) with dual DiffSum equal to 0 – an egalitarian
system (C21+)



Double Double Toil
and Trouble

Charles J.
Colbourn

Arizona State
University

The Current Landscape
Steiner systems S(2, 4, v)

I For infinitely many admissible v , there exists an S(2,4, v)
with dual DiffSum equal to 0 – an egalitarian system
(Lusi-C 21)
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The Topic for Today
Steiner quadruple systems S(3, 4, v)

I We examine the well-known doubling construction for
S(3,4, v)s.

I Then we label the points and the blocks to examine
consequences for the sum metrics.
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Steiner quadruple systems S(3,4, v)
Doubling

I Let (V ,B) be an S(3,4, v).

I We form an S(3,4,2v) on elements V ×{0,1}— we write
xi for (x , i) with x ∈ V and i ∈ {0,1}.

I The blocks are

I Type 1: {ai ,bj , c`,dm} whenever {a,b, c,d} ∈ B and
i + j + `+ m ≡ 1 (mod 2), and

I Type 2: {a0,b0,a1,b1} whenever a,b ∈ V and a 6= b.

I The doubling construction by Hanani (1960) uses
i + j + `+ m ≡ 0 (mod 2) instead. In fact you can choose
this parity arbitrarily for each block of the S(3,4, v).
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Doubling a Point Labelling

I Let (V ,B) be an S(3,4, v). It has b = 1
24 v(v − 1)(v − 2)

blocks.

I Suppose that it has block sums {σi : 0 ≤ i < b}.
I Double to form an S(3,4,2v) by assigning point x0 the

label x and point x1 the label x + v . What are its block
sums?

I For each B ∈ B with block sum σ in the S(3,4, v),
doubling makes four Type 1 blocks with block sum
σ + v and four with block sum σ + 3v .

I For each 0 ≤ a < b < v , there is a Type 2 block with
block sum 2v + 2a + 2b.
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Doubling a Point Labelling

I Let (V ,B) be an S(3,4, v). Recall that its MinSum is at
most v + 2 and its MaxSum at least 3v − 6.

I And the doubled S(3,4,2v) must have MinSum at most
2v + 2 and MaxSum at least 6v − 6.

I The Type 2 blocks have sums between 2v + 2 and 6v − 6.

I And if the S(3,4, v) has MinSum v + α and MaxSum
3v + β, the S(3,4,2v) has MinSum 2v + α and MaxSum
3(2v) + β.
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Doubling a Point Labelling

I A nice consequence: When v = 2`, there is an S(3,4, v)
with MinSum v + 2 and MaxSum 3v − 6.

I Earlier we saw an S(3,4,10) with MinSum 10 + 1 and
MaxSum 3(10)− 5. So there is an S(3,4,2`5) with
MinSum 2`5 + 1 and MaxSum 3(2`5)− 5 for all ` ≥ 1.

I Similarly there is an S(3,4,14) with MinSum 14 + 1 and
MaxSum 3(14)− 5, yielding another infinite class.
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Doubling a Block Labelling

I Let (V ,B) be an S(3,4, v).

I It has b = 1
24 v(v − 1)(v − 2) blocks. Call them B0 . . .Bb−1.

I We will label the

d =
1
24

2v(2v−1)(2v−2) = 8
[

1
24

v(v − 1)(v − 2)
]
+

(
v
2

)
blocks of the S(3,4,2v) from doubling.
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Doubling a Block Labelling
First Positions

I First we treat the blocks as 4-tuples, arranging them so
that either

I every element appears in the first position an even
number of times, or

I all but one element appears in the first position an
even number of times, and the last appears a
number of times that is odd and at least 3.
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Doubling a Block Labelling
First Positions

I The idea: An element is odd if it appears in the first
position an odd number of times.

I Suppose there are two odd elements o0 and o1.

I If some block has one on the first position and the other in
a later position, swap them to reduce the number of odd
elements by 2.

I Otherwise define

I A to be all elements in the first position in some block
containing o0 and o1. Note |A| ≥ (v − 2)/2.

I for i ∈ {0,1}, Bi to be all elements in the first position
in some block containing oi but not o1−i or in a block
containing oi in the first position. Note
|Bi | ≥ (v − 2)/2 because the 3-GDD of type 2(v−2)/2

obtained by deriving w.r.t. oi and then deleting o1−i
has no independent set of size larger than (v − 2)/2.
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Doubling a Block Labelling
First Positions

I Choose an element a that appears in two of A, B0, B1.

I Swap a and an odd element in the two corresponding
blocks to reduce the number of odd elements by 2.
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Doubling a Block Labelling
First Positions

I If there is one odd element o that is in the first position in
only one block (o,a,b, c), if any of a, b, or c appear in two
or more blocks in the first position, swap with o in this
block.

I Otherwise in the (v − 1)(v − 2)/6− 1 blocks that contain
o not in the first position, choose an element e that
appears the most times in the first position – this is at
least (v−1)(v−2)/6−1

v−4 – and swap e and o in one block. This
works provided that v ≥ 14.
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Doubling a Block Labelling
Patterns

I Next we give two 8× 4 arrays of subscripting patterns:

P2 P4

1000 1000
0111 1110
1110 0111
0001 0001
1011 1101
0100 1011
1101 0010
0010 0100

I P−2 is obtained from P2 by interchanging 0 and 1
throughout; similarly P−4 from P4.
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Doubling a Block Labelling
Type 1 Blocks

I Order all blocks of an S(3,4, v) as B0, . . . ,Bb−1, forming
each as a 4-tuple so that the occurrences of elements in
first positions is as before.

I Choose block offsets s0, . . . , sb−1, each from {±2,±4} so
that, for each element, the sum of all offsets of blocks
containing that element in the first position is 0.

I For each 0 ≤ i < b, write Bi = (x0, x1, x2, x3). Then for
0 ≤ j < 4,

I when (r0, r1, r2, r3) is the j th row of Psi , define block
D4i+j = {(x0, r0), (x1, r1), (x2, r2), (x3, r3)}.

I when (r0, r1, r2, r3) is the (7− j)th row of Psi , define
D8b+(v

2)−1−4i−j = {(x0, r0), (x1, r1), (x2, r2), (x3, r3)}.
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Doubling a Block Labelling
Type 2 Blocks

I We have ordered all blocks D0, . . . ,D4b−1 and
D4b+(v

2)
, . . . ,D8b+(v

2)−1 of the doubled S(3,4,2v).

I To finish up, we must order the Type 2 blocks in some
order as D4b, . . . ,D4b+(v

2)−1.

I It has been shown that the edges of the complete graph of
order v can be ordered to get dual DiffSum 0 when v 6≡ 0
(mod 4), 1 when v ≡ 0 (mod 4), provided that v ≥ 6
(Stewart 1964, C 2021).

I Let e0, . . . ,e(v
2)−1 be such an ordering.

I For 0 ≤ j <
(v

2

)
, with ei = {x0, x1}, define

D4b+j = {(x0,0), (x0,1), (x1,0), (x1,1)}.
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Doubling a Block Labelling
The Conclusion

I Whenever v ≡ 4,20 (mod 24), there is an S(3,4, v) with
dual DiffSum 0.

I Whenever v ≡ 8,16 (mod 24) and v > 8, there is an
S(3,4, v) with dual DiffSum 1.



Double Double Toil
and Trouble

Charles J.
Colbourn

Arizona State
University

Summing Up

I Block labelling of SQSs can also be obtained by doubling
other 3-wise balanced designs, but the details are more
involved!

I Thanks for listening!


