> Charles J. Colbourn Arizona State University

Double Double Toil and Trouble

Charles J. Colbourn Arizona State University

Rijeka (virtually), July 2021

(Uniform) Set system of type (v, k):

- a set V of v points or elements
- a collection B of k-subsets of V, called blocks
- Regular set system of type (v, k, r):
 - a set system of type (v, k) so that every point is in exactly r blocks.
- Steiner system S(t, k, v):

• a regular set system of type $(v, k, \frac{\binom{V-1}{t-1}}{\binom{K-1}{t-1}})$, (V, \mathcal{B}) , for which each *t*-subset $T \subseteq V$ satisfies $T \subseteq B$ for exactly one $B \in \mathcal{B}$.

Double Double Toil and Trouble

(Uniform) Set system of type (v, k):

- a set V of v points or elements
- a collection B of k-subsets of V, called blocks
- Regular set system of type (v, k, r):
 - a set system of type (v, k) so that every point is in exactly r blocks.
- Steiner system S(t, k, v):
 - a regular set system of type (v, k, ^(v-1)_{t-1}), (V, B), for which each *t*-subset T ⊆ V satisfies T ⊆ B for exactly one B ∈ B.

Double Double Toil and Trouble

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

Uniform set systems, regular set systems, and Steiner systems — and their duals — have been extensively applied in coding theory, communications, experimental design, etc. etc. — and in access and load balancing for storage systems.

・ロト・四ト・ヨト・ヨー もんぐ

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

Uniform set systems, regular set systems, and Steiner systems — and their duals — have been extensively applied in coding theory, communications, experimental design, etc. etc. — and in access and load balancing for storage systems.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The General Problem

- Use a (regular, uniform) set system to associate data items (points) to storage units (blocks), so that accesses to storage units are balanced.
- Because in a regular set system, every point is in the same number of blocks, and every block contains the same number of points, they achieve the "balance" that we want!
- Or do they? Not all data items have the same long-term frequency of access, or popularity.

Double Double Toil and Trouble

Charles J. Colbourn Arizona State University

・ロト・日本・モート ヨー うへで

The General Problem

- Use a (regular, uniform) set system to associate data items (points) to storage units (blocks), so that accesses to storage units are balanced.
- Because in a regular set system, every point is in the same number of blocks, and every block contains the same number of points, they achieve the "balance" that we want!
- Or do they? Not all data items have the same long-term frequency of access, or popularity.

Double Double Toil and Trouble

Charles J. Colbourn Arizona State University

・ロト・日本・モート ヨー うへで

The General Problem

Popularity

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

- Dau and Milenkovic (2018) suggest ranking the data items by popularity, ordering the data items from most to least popular.
- Placing a total ordering on the points and a total ordering on the blocks leads to a unique incidence matrix for the Steiner (or set) system.

・ロト・日本・日本・日本・日本・日本

Primal

- Let $A = (a_{ij})$ be a $n \times m$ incidence matrix.
- For each column 0 ≤ *j* < *m*, define the weighted column sum (block sum) σ_j to be

$$\sum_{i=0}^{n-1} i \cdot a_{ij}$$

Then define

$$\begin{array}{lll} \mathsf{MinSum}(A) &=& \min(\sigma_j: 0 \leq j < m\} \\ \mathsf{MaxSum}(A) &=& \max(\sigma_j: 0 \leq j < m\} \\ \mathsf{DiffSum}(A) &=& \mathsf{MaxSum}(A) - \mathsf{MinSum}(A). \end{array}$$

Double Double Toil and Trouble

Primal

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

 Goals: Order the rows of A (i.e., the points of the underlying set system) to achieve

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- large MinSum
- small MaxSum
- small DiffSum

Double Double Toil and Trouble

- Let $A = (a_{ij})$ be a $n \times m$ incidence matrix.
- Transpose A and consider sum metrics for A^T.
- This gives point sums for A, and we focus on ordering the blocks of A.

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

 Goals: Order the columns of A (i.e., the blocks of the underlying set system, or the rows of A^T) to achieve

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

- Iarge (dual) MinSum
- small (dual) MaxSum
- small (dual) DiffSum

> Charles J. Colbourn Arizona State University

Example S(3, 4, 10) – Regular of type (10,4,12) One incidence matrix A_1

MinSum $(A_1) = 6$, MaxSum $(A_1) = 30$, DiffSum $(A_1) = 24$ MinSum $(A_1^T) = 86$, MaxSum $(A_1^T) = 262$, DiffSum $(A_1^T) = 176$

> Charles J. Colbourn Arizona State University

Example *S*(3, 4, 10)

Another incidence matrix A₂

MinSum(A_2) = 11, MaxSum(A_2) = 25, and DiffSum(A_2) = 14 MinSum(A_2^{T}) = MaxSum(A_2^{T}) = 174, and DiffSum(A_2^{T}) = 0

・ロト・日本・モート ヨー うへで

> Charles J. Colbourn Arizona State University

Example *S*(3, 4, 10)

Another incidence matrix A₂

 $\begin{array}{l} \mathsf{MinSum}(A_2) = 11, \mathsf{MaxSum}(A_2) = 25, \mathsf{and} \; \mathsf{DiffSum}(A_2) = 14 \\ \mathsf{MinSum}(A_2^\mathsf{T}) = \mathsf{MaxSum}(A_2^\mathsf{T}) = 174, \mathsf{and} \; \mathsf{DiffSum}(A_2^\mathsf{T}) = 0 \end{array}$

The Questions

Double Double Toil and Trouble

- The sum metrics for a specific incidence matrix are easily calculated.
- Can we optimize each metric over all incidence matrices for a specified set system?
- Can we optimize each metric over all incidence matrices for all (uniform, regular, or Steiner) set systems having the same parameters?

Reversal

- Suppose that A is a regular set system of type (v, k, r), with MinSum m and dual MinSum d.
- Reverse the ordering of the columns and the ordering of the rows to get an incidence matrix *R*.
- Then *R* has MaxSum k(v-1) m and dual MaxSum r(b-1) d.
- And vice versa. So we can focus on MInSum to understand MaxSum.
- But be careful! Although DiffSum is MaxSum minus MinSum, this is for a specific incidence matrix, and it may happen that no incidence matrix with largest MinSum can also have smallest MaxSum.

Double Double Toil and Trouble

Reversal

- Suppose that A is a regular set system of type (v, k, r), with MinSum m and dual MinSum d.
- Reverse the ordering of the columns and the ordering of the rows to get an incidence matrix *R*.
- Then *R* has MaxSum k(v-1) m and dual MaxSum r(b-1) d.
- And vice versa. So we can focus on MInSum to understand MaxSum.
- But be careful! Although DiffSum is MaxSum minus MinSum, this is for a specific incidence matrix, and it may happen that no incidence matrix with largest MinSum can also have smallest MaxSum.

Double Double Toil and Trouble

How bad can labellings be?

- ▶ In an S(t, k, v) having two disjoint blocks, labelling the points of one with $\{0, ..., k-1\}$ and of the second with $\{v k, ..., v 1\}$, one gets MinSum $\binom{k}{2}$, MaxSum $k(v k) + \binom{k}{2}$ and DiffSum k(v k) and these are the worst possible.
- Similarly labelling all blocks containing a particular point with $\{0, ..., r-1\}$ yields dual MinSum $\binom{r}{2}$, and its reversal has dual MaxSum $r(b-r) + \binom{r}{2}$ and these are the worst possible.
- ▶ But we cannot get both at the same time! Indeed, for $\lambda_2 = \binom{v-2}{t-2}$, the worst dual DiffSum is $(r \lambda_2)(b r + \lambda_2)$.

Double Double Toil and Trouble

Some easy counting

Primal

- Consider a regular set system of type (v, k, r).
- It must have $b = \frac{vr}{k}$ blocks.
- The total block sum is

$$r\sum_{i=0}^{\nu-1}i=r\binom{\nu}{2}$$

The average block sum is

$$\frac{r}{b}\binom{v}{2} = \frac{1}{2}k(v-1)$$

- an upper bound on MinSum
- a lower bound on MaxSum

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

・ロト・西ト・ヨト・ヨー シック

More easy counting

- Consider a regular set system of type (v, k, r).
- It must have $b = \frac{vr}{k}$ blocks.
- The total point sum is

$$k\sum_{i=0}^{b-1}i=k\binom{b}{2}$$

The average point sum is

$$\frac{k}{v}\binom{b}{2} = \frac{1}{2}r(b-1)$$

- an upper bound on dual MinSum
- a lower bound on dual MaxSum

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

・ロト・西ト・ヨト ・ヨー シタの

A primal bound

- Consider an S(t, k, v). It has average block sum $\frac{1}{2}k(v-1)$.
- Now choose a set of points X = {x₁,..., x_{t−1}}. Let C be the blocks that contain all points of X. Form the derived set system D with respect to X.
- ▶ *D* has $\frac{v-t+1}{k-t+1}$ blocks, each of size k t + 1, that partition $\{0, \ldots, v-1\} \setminus X$.
- The average block sum of a block in D is

$$\frac{k-t+1}{\nu-t+1} \left[\sum_{i=0}^{\nu-1} i - \sum_{j=1}^{t-1} x_j \right]$$

Double Double Toil and Trouble

Charles J. Colbourn Arizona State University

くして、 「「 (川) (川) (川) (町) (目)

A primal bound

• Choose $X = \{0, ..., t - 2\}.$

▶ The average block sum of a block in C is

$$\binom{t-1}{2}+\frac{k-t+1}{\nu-t+1}\left[(t-1)(\nu-t+1)+\binom{\nu-t+1}{2}\right]$$

▶ The average block sum of a block in C is

$$\binom{t-1}{2}+\frac{(k-t+1)(\nu+t-2)}{2}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

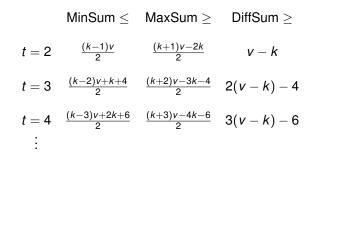
Double Double Toil and Trouble

The Basic Bound

Primal

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University



▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The Current Landscape

Steiner triple systems S(2, 3, v)

- There exists an S(2,3, v) with MinSum equal to v, the largest possible. (DM18).
- For v sufficiently large, some S(2, 3, v) has MinSum at most c log v (CCDGLLM20)
- ► Every S(2,3, v) has DiffSum at least v when v ≥ 7 (DM18), at least v + 1 when v ≥ 13 (CCDGLLM20)
- For every admissible v ≥ 13, there exists an S(2, 3, v) with DiffSum at most v + 7 (CCDGLLM20)
- For infinitely many admissible v ≥ 13, there exists an S(2,3, v) with dual DiffSum equal to 0 an egalitarian system (C21+)

Double Double Toil and Trouble

The Current Landscape

Steiner systems S(2, 4, v)

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

For infinitely many admissible v, there exists an S(2, 4, v) with dual DiffSum equal to 0 – an egalitarian system (Lusi-C 21)

・ロト・西ト・山田・山田・山下

The Topic for Today

Steiner quadruple systems S(3, 4, v)

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

- We examine the well-known doubling construction for S(3,4, v)s.
- Then we label the points and the blocks to examine consequences for the sum metrics.

・ロト・日本・日本・日本・日本・日本

Steiner quadruple systems S(3, 4, v)Doubling

► Let (V, B) be an S(3, 4, v).

We form an S(3,4,2v) on elements V × {0,1} — we write x_i for (x, i) with x ∈ V and i ∈ {0,1}.

The blocks are

▶ Type 1: $\{a_i, b_j, c_\ell, d_m\}$ whenever $\{a, b, c, d\} \in \mathcal{B}$ and $i + j + \ell + m \equiv 1 \pmod{2}$, and

▶ Type 2: $\{a_0, b_0, a_1, b_1\}$ whenever $a, b \in V$ and $a \neq b$.

The doubling construction by Hanani (1960) uses i+j+ℓ+m ≡ 0 (mod 2) instead. In fact you can choose this parity arbitrarily for each block of the S(3,4, v). Double Double Toil and Trouble

Doubling a Point Labelling

► Let (V, B) be an S(3, 4, v). It has $b = \frac{1}{24}v(v-1)(v-2)$ blocks.

- Suppose that it has block sums $\{\sigma_i : 0 \le i < b\}$.
- ► Double to form an S(3, 4, 2v) by assigning point x_0 the label x and point x_1 the label x + v. What are its block sums?
 - For each $B \in \mathcal{B}$ with block sum σ in the S(3, 4, v), doubling makes four Type 1 blocks with block sum $\sigma + v$ and four with block sum $\sigma + 3v$.
 - For each $0 \le a < b < v$, there is a Type 2 block with block sum 2v + 2a + 2b.

Double Double Toil and Trouble

Doubling a Point Labelling

- Let (V, B) be an S(3, 4, v). Recall that its MinSum is at most v + 2 and its MaxSum at least 3v − 6.
- And the doubled $S(3, 4, 2\nu)$ must have MinSum at most $2\nu + 2$ and MaxSum at least $6\nu 6$.
- The Type 2 blocks have sums between 2v + 2 and 6v 6.
- And if the S(3, 4, v) has MinSum $v + \alpha$ and MaxSum $3v + \beta$, the S(3, 4, 2v) has MinSum $2v + \alpha$ and MaxSum $3(2v) + \beta$.

Double Double Toil and Trouble

Doubling a Point Labelling

Double Double Toil and Trouble

- A nice consequence: When $v = 2^{\ell}$, there is an S(3, 4, v) with MinSum v + 2 and MaxSum 3v 6.
- ► Earlier we saw an S(3, 4, 10) with MinSum 10 + 1 and MaxSum 3(10) 5. So there is an $S(3, 4, 2^{\ell}5)$ with MinSum $2^{\ell}5 + 1$ and MaxSum $3(2^{\ell}5) 5$ for all $\ell \ge 1$.
- Similarly there is an S(3,4,14) with MinSum 14 + 1 and MaxSum 3(14) - 5, yielding another infinite class.

Doubling a Block Labelling

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

• Let (V, \mathcal{B}) be an S(3, 4, v).

▶ It has $b = \frac{1}{24}v(v-1)(v-2)$ blocks. Call them $B_0 \dots B_{b-1}$.

We will label the

$$d = \frac{1}{24} 2v(2v-1)(2v-2) = 8\left[\frac{1}{24}v(v-1)(v-2)\right] + \binom{v}{2}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

blocks of the $S(3, 4, 2\nu)$ from doubling.

Doubling a Block Labelling First Positions

Double Double Toil and Trouble

- First we treat the blocks as 4-tuples, arranging them so that either
 - every element appears in the first position an even number of times, or
 - all but one element appears in the first position an even number of times, and the last appears a number of times that is odd and at least 3.

Doubling a Block Labelling

First Positions

- The idea: An element is odd if it appears in the first position an odd number of times.
- Suppose there are two odd elements o₀ and o₁.
- If some block has one on the first position and the other in a later position, swap them to reduce the number of odd elements by 2.

Otherwise define

A to be all elements in the first position in some block containing o₀ and o₁. Note |A| ≥ (v − 2)/2.

▶ for $i \in \{0, 1\}$, B_i to be all elements in the first position in some block containing o_i but not o_{1-i} or in a block containing o_i in the first position. Note $|B_i| \ge (v-2)/2$ because the 3-GDD of type $2^{(v-2)/2}$ obtained by deriving w.r.t. o_i and then deleting o_{1-i} has no independent set of size larger than (v-2)/2. Double Double Toil and Trouble

Doubling a Block Labelling First Positions

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

- Choose an element *a* that appears in two of A, B_0 , B_1 .
- Swap a and an odd element in the two corresponding blocks to reduce the number of odd elements by 2.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Doubling a Block Labelling First Positions

- If there is one odd element o that is in the first position in only one block (o, a, b, c), if any of a, b, or c appear in two or more blocks in the first position, swap with o in this block.
- Otherwise in the (v 1)(v 2)/6 1 blocks that contain o not in the first position, choose an element e that appears the most times in the first position – this is at least $\frac{(v-1)(v-2)/6-1}{v-4}$ – and swap e and o in one block. This works provided that $v \ge 14$.

Double Double Toil and Trouble

Doubling a Block Labelling Patterns

Next we give two 8 × 4 arrays of subscripting patterns:

<i>P</i> ₂	P_4
1000	1000
0111	1110
1110	0111
0001	0001
1011	1101
0100	1011
1101	0010
0010	0100

P₋₂ is obtained from P₂ by interchanging 0 and 1 throughout; similarly P₋₄ from P₄. Double Double Toil and Trouble

Doubling a Block Labelling Type 1 Blocks

- Order all blocks of an S(3,4, v) as B₀,..., B_{b-1}, forming each as a 4-tuple so that the occurrences of elements in first positions is as before.
- Choose block offsets s₀,..., s_{b-1}, each from {±2, ±4} so that, for each element, the sum of all offsets of blocks containing that element in the first position is 0.
- For each $0 \le i < b$, write $B_i = (x_0, x_1, x_2, x_3)$. Then for $0 \le j < 4$,
 - when (r_0, r_1, r_2, r_3) is the *j*th row of P_{s_i} , define block $D_{4i+j} = \{(x_0, r_0), (x_1, r_1), (x_2, r_2), (x_3, r_3)\}.$
 - ▶ when (r_0, r_1, r_2, r_3) is the (7 j)th row of P_{s_i} , define $D_{8b+\binom{v}{2}-1-4i-j} = \{(x_0, r_0), (x_1, r_1), (x_2, r_2), (x_3, r_3)\}.$

Double Double Toil and Trouble

Doubling a Block Labelling Type 2 Blocks

- ▶ We have ordered all blocks D_0, \ldots, D_{4b-1} and $D_{4b+\binom{v}{2}}, \ldots, D_{8b+\binom{v}{2}-1}$ of the doubled S(3, 4, 2v).
- ► To finish up, we must order the Type 2 blocks in some order as D_{4b},..., D_{4b+(^v₂)-1}.
- It has been shown that the edges of the complete graph of order v can be ordered to get dual DiffSum 0 when v ≠ 0 (mod 4), 1 when v ≡ 0 (mod 4), provided that v ≥ 6 (Stewart 1964, C 2021).
- Let $e_0, \ldots, e_{\binom{v}{2}-1}$ be such an ordering.
- ► For $0 \le j < \binom{v}{2}$, with $e_i = \{x_0, x_1\}$, define $D_{4b+j} = \{(x_0, 0), (x_0, 1), (x_1, 0), (x_1, 1)\}.$

Double Double Toil and Trouble

Doubling a Block Labelling

Double Double Toil and Trouble

- Whenever $v \equiv 4,20 \pmod{24}$, there is an S(3,4,v) with dual DiffSum 0.
- Whenever $v \equiv 8, 16 \pmod{24}$ and v > 8, there is an S(3, 4, v) with dual DiffSum 1.

Summing Up

Double Double Toil and Trouble

> Charles J. Colbourn Arizona State University

- Block labelling of SQSs can also be obtained by doubling other 3-wise balanced designs, but the details are more involved!
- Thanks for listening!

・ロト・西・・田・・田・・日・