Joint work with J. D'haeseleer, L. Storme and A. Švob

Jonathan Mannaert CDC Rijeka, July 14, 2021

Definition

A Cameron-Liebler line class \mathcal{L} is a set of lines in PG(3, q), such that for every line spread \mathcal{S} it holds that $|\mathcal{L} \cap \mathcal{S}| = x$. Here *x* denotes an integer which is called the parameter of \mathcal{L} .

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14, 2021 1/23

Definition

A Cameron-Liebler line class \mathcal{L} is a set of lines in PG(3, q), such that for every line spread \mathcal{S} it holds that $|\mathcal{L} \cap \mathcal{S}| = x$. Here *x* denotes an integer which is called the parameter of \mathcal{L} .

Other definitions:

- ... is a Boolean degree 1 function.
- ... for every line ℓ there are $q^2(x \chi_{\mathcal{L}}(\ell))$ lines of \mathcal{L} skew to ℓ .
- ... for every plane π and point $p \in \pi$, it holds that $|star(p) \cap \mathcal{L}| + |line(\pi) \cap \mathcal{L}| = x + (q+1)|pencil(p,\pi) \cap \mathcal{L}|.$

Some basic observations in PG(3, q)

For a Cameron-Liebler line classes \mathcal{L} and \mathcal{L}' of parameters x and x' it holds that...

▶
$$0 \le x \le q^2 + 1$$

►
$$|\mathcal{L}| = x(q^2 + q + 1)$$

- ► The complement of \mathcal{L} is a Cameron-Liebler line class of parameter $q^2 + 1 x$
- If L ∩ L' = Ø, then L ∪ L' is a Cameron-Liebler line class of parameter x + x'.

CDC Rijeka, July 14, 2021 2/23

Example (of parameter x = 0) the empty set.

Example (of parameter x = 1)

- ► All the lines through a fixed point *p*.
- All lines inside a plane.

Example (of parameter x = 2)

The set of lines inside a plane π union the lines through a point $p \notin \pi$.

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14 2021 3/23

Example (of parameter x = 0) the empty set.

Example (of parameter x = 1)

- ► All the lines through a fixed point *p*.
- All lines inside a plane.

Example (of parameter x = 2)

The set of lines inside a plane π union the lines through a point $p \notin \pi$.

Theorem (Cameron and Liebler)

These examples and complements are the only examples for $x \in \{0, 1, 2, q^2 - 1, q^2, q^2 + 1\}$.

Introduction: Main research goals

- 1. Finding non-existence results for other parameters. Suppose that \mathcal{L} is a Cameron-Liebler line class in PG(3, q) of parameter x.
 - (Govaerts and Storme) Then $x \le 2$ or x > q.
 - (Metsch) Also $x > q \sqrt[3]{\frac{q}{2} \frac{2}{3}q}$.

► (Gavrilyuk and Metsch)Then for *n* equal to the number of lines of \mathcal{L} in a plane or through a point, it holds that $x(x-1) + 2n(n-x) \equiv 0 \mod 2(q+1)$.

2. Finding non-trivial examples.

- ► (Bruen and Drudge) Cameron-Liebler line classes of parameter $x = \frac{q^2+1}{2}$ in PG(3, q), q odd.
- ▶ (De Beule, Demeyer, Rodgers and Metsch) Cameron-Liebler line classes \mathcal{L} of parameter $x = \frac{q^2-1}{2}$ in PG(3, q), $q \equiv 5$ or 9 (mod 12).

Jonathan Mannaert

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14, 2021 5/23

Definition

A Cameron-Liebler line class \mathcal{L} is a set of lines in AG(3, q), such that for every line spread \mathcal{S} it holds that $|\mathcal{L} \cap \mathcal{S}| = x$. Here *x* denotes an integer which is called the parameter of \mathcal{L} .

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14, 2021 5/23

Definition

A Cameron-Liebler line class \mathcal{L} is a set of lines in AG(3, q), such that for every line spread \mathcal{S} it holds that $|\mathcal{L} \cap \mathcal{S}| = x$. Here *x* denotes an integer which is called the parameter of \mathcal{L} .

Fact

There are more line spreads in AG(3, q) then in PG(3, q).

- (Type I) Every line spread of PG(3, q) reduced to AG(3, q).
- (Type II) All the lines through a point at infinity.

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14

Similar basic observations in AG(3, q)

For a Cameron-Liebler line classes \mathcal{L} and \mathcal{L}' of parameters x and x' it holds that...

▶
$$0 \le x \le q^2$$

►
$$|\mathcal{L}| = x(q^2 + q + 1)$$

- ► The complement of \mathcal{L} is a Cameron-Liebler line class of parameter $q^2 x$
- If L ∩ L' = Ø, then L ∪ L' is a Cameron-Liebler line class of parameter x + x'.

```
Example (of parameter x = 0) the empty set.
```

Example (of parameter x = 1) All the lines through a fixed point p.

```
Example (of parameter x = 2) ???
```

Example (of parameter x = 0) the empty set.

Example (of parameter x = 1) All the lines through a fixed point *p*.

```
Example (of parameter x = 2) ???
```


Example (of parameter x = 0) the empty set.

Example (of parameter x = 1) All the lines through a fixed point *p*.

```
Example (of parameter x = 2) ???
```


Remark

There does not exist a Cameron-Liebler line class of parameter x = 2.

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14, 2021 7/23

Connection With PG(3, q)

Theorem

Every Cameron-Liebler line class in AG(3,q) is a Cameron-Liebler line class in the projective closure PG(3,q), and this line class has the same parameter x.

One can prove this by using the definitions and type I line spreads.

Jonathan Mannaert

Connection With PG(3, q)

Theorem

Every Cameron-Liebler line class in AG(3,q) is a Cameron-Liebler line class in the projective closure PG(3,q), and this line class has the same parameter x.

One can prove this by using the definitions and type I line spreads.

Consequence

Every property of a Cameron-Liebler line class in PG(3,q) can be translated to AG(3,q).

Jonathan Mannaert

Modular Equality

Theorem (Gavrilyuk and Metsch)

Let \mathcal{L} be a Cameron-Liebler line class of parameter x in PG(3,q). Then for n equal to the number of lines of \mathcal{L} in a plane or through a point, it holds that

$$x(x-1)+2n(n-x)\equiv 0 \mod 2(q+1)$$

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14

Modular Equality

Corollary

Let \mathcal{L} be a Cameron-Liebler line class of parameter x in AG(3, q), then it holds that

 $x(x-1) \equiv 0 \mod 2(q+1).$

Proof. Use the fact that \mathcal{L} is a Cameron-Liebler line class in PG(3, *q*) and the known modular equality to obtain that

$$x(x-1)+2n(n-x)\equiv 0 \mod 2(q+1).$$

Here *n* is the number of lines of \mathcal{L} through a certain point or in a certain plane. *In particular we may choose* n = 0 *or* n = x.

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14

2021

What if we choose another n?

CDC Rijeka, July 14, 2021 11/23

Jonathan Mannaert

What if we choose another n?

Theorem (Choosing an affine plane) For every (affine) plane π it holds that

 $|line(\pi) \cap \mathcal{L}| \equiv 0 \mod (q+1).$

Proof. Use the fact that

 $|\text{star}(p) \cap \mathcal{L}| + |\text{line}(\pi) \cap \mathcal{L}| = x + (q+1)|\text{pencil}(p,\pi) \cap \mathcal{L}|,$

with *p* at infinity! Hence $|star(p) \cap \mathcal{L}| = x$.

CDC Rijeka, July 14, 2021 11/23

What if we choose another n?

Theorem (Choosing an affine plane) For every (affine) plane π it holds that

 $|line(\pi) \cap \mathcal{L}| \equiv 0 \mod (q+1).$

Proof. Use the fact that

 $|\mathsf{star}(p) \cap \mathcal{L}| + |\mathsf{line}(\pi) \cap \mathcal{L}| = x + (q+1)|\mathsf{pencil}(p,\pi) \cap \mathcal{L}|,$

with *p* at infinity! Hence $|star(p) \cap \mathcal{L}| = x$. Conclusion.

$$x(x-1) + 2n(n-x) \equiv 0 \mod 2(q+1)$$

reduces to
$$x(x-1) \equiv 0 \mod 2(q+1)$$

CDC Rijeka, July 14, 2021 11/23

Jonathan Mannaert

What if we choose another n?

CDC Rijeka, July 14, 2021 12/23

Jonathan Mannaert

What if we choose another n?

Theorem (Choosing an affine point) For every (affine) point p it holds that

 $|star(p) \cap \mathcal{L}| \equiv x \mod (q+1).$

Proof. Use again the fact that

 $|star(p) \cap \mathcal{L}| + |line(\pi) \cap \mathcal{L}| = x + (q+1)|pencil(p,\pi) \cap \mathcal{L}|,$

with π a plane. Hence $|line(\pi) \cap \mathcal{L}| = 0 \pmod{q+1}$.

CDC Rijeka, July 14, 2021 12/23

What if we choose another n?

Theorem (Choosing an affine point) For every (affine) point p it holds that

 $|star(p) \cap \mathcal{L}| \equiv x \mod (q+1).$

Proof. Use again the fact that

 $|\mathsf{star}(p) \cap \mathcal{L}| + |\mathsf{line}(\pi) \cap \mathcal{L}| = x + (q+1)|\mathsf{pencil}(p,\pi) \cap \mathcal{L}|,$

with π a plane. Hence $|line(\pi) \cap \mathcal{L}| = 0 \pmod{q+1}$.

$$x(x-1) + 2n(n-x) \equiv 0 \mod 2(q+1)$$

reduces to
$$x(x-1) \equiv 0 \mod 2(q+1)$$

CDC Rijeka, July 14, 2021 12/23

Jonathan Mannaert

Modular Equality

Corollary

Let \mathcal{L} be a Cameron-Liebler line class of parameter x in AG(3,q), then it holds that

$$x(x-1) \equiv 0 \mod 2(q+1).$$

Question

Can we improve this equality by choosing another n?

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14

2021

Modular Equality

Corollary

Let \mathcal{L} be a Cameron-Liebler line class of parameter x in AG(3, q), then it holds that

$$x(x-1) \equiv 0 \mod 2(q+1).$$

Question

Can we improve this equality by choosing another n?

No!

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14

2021

Modular Equality

Consequence

There does not exist a Cameron-Liebler line class of parameter x = 2 in AG(3, q).

Consequence

- If 2(q + 1) = p₁^{h₁} ··· p_s^{h₅}, then the number of possible parameters of a Cameron-Liebler line class in AG(3, q) is at most
 - $\left\{ \begin{array}{ll} 2^{s-1}q, & \text{if q is even} \\ 2^{s-1}q-2^{s-1}+2, & \text{if q is odd} \end{array} \right.,$

2021

14/23

Proof. Use the Chinese Remainder Theorem!

Jonathan Mannaert

Some Classification

Lemma

- ► Classification of parameters in AG(3, 2): x ∈ {0, 1, 3, 4}.
- ► Classification of parameters in AG(3, 3): x ∈ {0, 1, 8, 9}.
- Classification of parameters in AG(3, 4): x ∈ {0, 1, 15, 16}.
 Proof. x ∈ {5, 6, 10, 11} are ruled out by results of Govaerts and Penttila.

CDC Rijeka, July 14

15/23

2021

Some Classification

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14

16/23

2021

A Non-Trivial Example

Example (For $q \equiv 5 \text{ or } 9 \pmod{12}$.)

Consider the Cameron-Liebler line class in PG(3, q) of parameter $x = \frac{q^2-1}{2}$ Given by found by De Beule, Demeyer, Rodgers and Metsch. Then this is **skew to the set of lines of a plane**, hence this line set is an example of a Cameron-Liebler line class in AG(3, q).

A similar results was simultaneously found by Feng, Momihara and Xiang.

A Non-Trivial Example

Example (For $q \equiv 5 \text{ or } 9 \pmod{12}$.)

Consider the Cameron-Liebler line class in PG(3, q) of parameter $x = \frac{q^2-1}{2}$ Given by found by De Beule, Demeyer, Rodgers and Metsch. Then this is **skew to the set of lines of a plane**, hence this line set is an example of a Cameron-Liebler line class in AG(3, q).

A similar results was simultaneously found by Feng, Momihara and Xiang.

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14

2021

Classification of parameters and comparison

q	In PG(3, <i>q</i>)	In AG(3, <i>q</i>)
2	$x \in \{0, 1, 2, 3, 4, 5\}$	$x \in \{0, 1, 3, 4\}$
3	$x^{\ddagger} \in \{0, 1, 2, 5, 8, 9, 10\}$	$x \in \{0, 1, 8, 9\}$
4	$x^{\P} \in \{0, 1, 2, 7, 10, 15, 16, 17\}$	$x \in \{0, 1, 15, 16\}$
5	$x^{\S} \in \{0, 1, 2, 10, 12, 13, 14, 16, 24, 25, 26\}$	$x \in \{0, 1, 12, 13, 24, 25\}$

- ‡ : found by Drudge and Penttila
- ¶ : found by Gavrilyuk, Govaerts, Penttila and Mogilnyukh
- § : found by Gavrilyuk and Metsch

CDC Rijeka, July 14

18/23

2021

Thank you for your attention!

Are there any questions?

CDC Rijeka, July 14, 2021 19/23

Jonathan Mannaert

Extra: A Second Connection With PG(3, q)

Theorem

Every Cameron-Liebler line class in PG(3, q) that does not contain lines in a certain plane π , is a Cameron-Liebler line class of the same parameter in AG(3, q) \cong PG(3,q)/ π .

Proof. Is done by looking at the algebraic definition of Cameron-Liebler line classes in PG(3, q).

CDC Rijeka, July 14, 2021 20/23

References

- A A. Bruen and K. Drudge.
 The construction of Cameron–Liebler line classes in PG(3, q).
 Finite Fields Appl., 5:35–45, January 1999.
- P.J. Cameron and R.A. Liebler. Tactical decompositions and orbits of projective groups. Linear Algebra Appl., 46:91–102, July 1982.
- Jan De Beule, Jeroen Demeyer, Klaus Metsch, and Morgan Rodgers.
 A new family of tight sets in Q⁺(5, q).
 Des. Codes Cryptogr., 78(3):655-678, 2016.
- J. D'haeseleer, J. Mannaert, L. Storme, and A. Švob. Cameron-Liebler line classes in AG(3, q). *Finite Fields Appl.* 67: 1071–5797, 2020.

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14, 2021 21/23

References

- T. Feng, K. Momihara, and Q. Xiang.
 Cameron–Liebler line classes with parameter x=^{q²-1}/₂.
 J. Combin. Theory Ser. A, 133:307 338, 2015.
- A. Gavrilyuk and I. Mogilnyukh Cameron-Liebler line classes in PG(n, 4) Des. Codes Cryptogr., 73: 969–982, 2014.
- P. Govaerts and L. Storme. On Cameron-Liebler line classes. Adv. Geom., 4(3):279–286, 2004.
- P. Govaerts and T. Penttila
 Cameron-Liebler line classes in PG(3, 4)
 Bull. Belg. Math. Soc. Simon Stevins, 12 (5): 793–804., 2016.

CDC Rijeka, July 14, 2021 22/23

References

A. L. Gavrilyuk and K. Metsch. A modular equality for Cameron-Liebler line classes. J. Combin. Theory Ser. A, 127:224–242, 2014.

Jonathan Mannaert

Cameron-Liebler line classes in AG(3, q)

CDC Rijeka, July 14, 2021 23/23