\

EIGENVALUES OF OPPOSITENESS GRAPHS
AND ERDOS-KO-RADO FOR FLAGS

joint work with Jan De Beule and Klaus Metsch

Sam Mattheus

Combinatorial Designs and Codes
July 14, 2021

VRIJE
UNIVERSITEIT
BRUSSEL
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{ How large can a set of intersecting lines in PG(3, g) be? )
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Erd6s-Ko-Rado problems

How large can a set of intersecting lines in PG(3, g) be?

How large can a set of flags in PG(3, q) be? ]




Erd6s-Ko-Rado problems

How large can a set of intersecting lines in PG(3, g) be? )

How large can a set of non-opposite flags in PG(3, q) be? )
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1. Rephrase the problem

V(1) = Qs
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2. The ratio bound

Let I' be a k-regular graph on n vertices whose adjacency
matrix A(') has smallest eigenvalue A\. Thenif Cis a
coclique we have

n
ICl < —
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2. The ratio bound

Let I be a k-regular graph on n vertices whose adjacency
matrix A(') has smallest eigenvalue A\. Thenif Cis a
coclique we have

by
Moreover, if equality holds, then 1¢ is contained in the
sum of the eigenspaces corresponding to the
eigenvalues k and \.
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A(l) is contained in a symmetric association scheme.
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The ratio bound
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A(T) is contained in a symmetric association scheme.

We find k = g* and A = —g2.
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A(T) is contained in a symmetric association scheme.

We find k = g* and A = —g2.

# lines

= coclique has size at most =q2 1.
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A(T) in a non-commutative association scheme.
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A(T) in a non-commutative association scheme. |
/-’ a(n)
9.2.2. Theorem (Springer). Let x € Irf(KH). The element T2, is central in H
and it acts on a simple module affording x by the scalar

f xi(s)
= ul*, where fg:=Ng(1+ €Z.
= sle_s'[: o * s( X1(|))
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A(T) in a non-commutative association scheme.

9.2.2. Theorem (Springer). Let x € Irf(KH). The element T2, is central in H
and it acts on a simple module affording X by the scalar

f xi(s)
:=||u‘, here fg:=Ng(1+ €Z.
= sES’ ¢ v * s( X](]))

Brouwer (2010): the eigenvalues are powers of g.
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A(') in a non-commutative association scheme.

9.2.2. Theorem (Springer). Let x € Irf(KH). The element T2, is central in H
and it acts on a simple module affording X by the scalar

f xi(s)
:=||u‘, here fg:=Ng(1+ €Z.
= sES’ ¢ v * s( X](]))

Brouwer (2010): the eigenvalues are powers of g.

We find k = g® and A = —g*.




The ratio bound

A(') in a non-commutative association scheme.

9.2.2. Theorem (Springer). Let x € Irf(KH). The element T2, is central in H
and it acts on a simple module affording X by the scalar

f xi(s)
= ul*, where fg:=Ng(1+ €Z.
. sle_s[f o * s( Xl(]))

>

Brouwer (2010): the eigenvalues are powers of g.

We find k = g® and A = —g*.

= coclique has size at most ﬁ Elragj = (q%+q+1)(g+1)2
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Theorem (De Beule, M., Metsch)

We can compute the eigenvalues of opposition of
» maximal flags in projective and polar spaces,
» partial flags in polar spaces.




Summary

Theorem (De Beule, M., Metsch)

We can compute the eigenvalues of opposition of
» maximal flags in projective and polar spaces,
» partial flags in polar spaces.

Corollary
We can derive EKR bounds for all these cases.
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Thank you for your attention!



