EIGENVALUES OF OPPOSITENESS GRAPHS AND ERDŐS-KO-RADO FOR FLAGS

joint work with Jan De Beule and Klaus Metsch

Sam Mattheus

Combinatorial Designs and Codes July 14, 2021

Erdős-Ko-Rado problems

Erdős-Ko-Rado problems

How large can a set of intersecting lines in PG(3,q) be?

9 +9+1

Erdős-Ko-Rado problems

How large can a set of intersecting lines in PG(3,q) be?

How large can a set of non-opposite flags in PG(3, q) be?

The strategy

The strategy

1. Rephrase the problem

The strategy

1. Rephrase the problem

2. The ratio bound

Let Γ be a *k*-regular graph on *n* vertices whose adjacency matrix $A(\Gamma)$ has smallest eigenvalue λ . Then if *C* is a coclique we have

$$|C| \leq \frac{n}{1-\frac{k}{\lambda}}$$

The strategy

1. Rephrase the problem

2. The ratio bound

Let Γ be a *k*-regular graph on *n* vertices whose adjacency matrix $A(\Gamma)$ has smallest eigenvalue λ . Then if *C* is a coclique we have

$$|C| \leq \frac{n}{1-\frac{k}{\lambda}}$$

Moreover, if equality holds, then 1_C is contained in the sum of the eigenspaces corresponding to the eigenvalues k and λ .

 $A(\Gamma)$ is contained in a symmetric association scheme. L Jq (4,2) - rection space of matrices over C - closed under . =) commutation

 $A(\Gamma)$ is contained in a symmetric association scheme.

We find $k = q^4$ and $\lambda = -q^2$.

 $A(\Gamma)$ is contained in a symmetric association scheme.

We find $k = q^4$ and $\lambda = -q^2$.

 \Rightarrow coclique has size at most $\frac{\# \text{ lines}}{1+q^2} = q^2 + q + 1.$

 $A(\Gamma)$ in a non-commutative association scheme.

Summary

Summary

Theorem (De Beule, M., Metsch)

We can compute the eigenvalues of opposition of

- maximal flags in projective and polar spaces,
- partial flags in polar spaces.

Summary

Theorem (De Beule, M., Metsch)

We can compute the eigenvalues of opposition of

- maximal flags in projective and polar spaces,
- partial flags in polar spaces.

Corollary

We can derive EKR bounds for all these cases.

Galois geometries eSeminar July 20, 16h CEST

Thank you for your attention!