Completely regular codes in Johnson and Grassmann graphs with small covering radii

Ivan Mogilnykh, ivmog@math.nsc.ru

Combinatorial Designs and Codes, 14 July 2021

Keywords: completely regular code, constant weight/dimension code, design, q-ary design

- Definitions and Introduction.
- Completely regular codes from affine SQS and Desarguesian 2-spreads.
- Binary linear programming for completely regular codes in $J_2(6,3)$ and the table of completely regular codes in $J_2(6,3)$ with covering radius 1.

The Johnson graph J(n, k)

The vertices are k-subsets of the set $\{1, \ldots, n\}$ and the edges are subsets meeting in a (k-1)-subset.

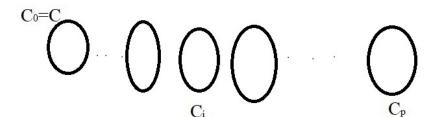
The Grassmann graph $J_q(n, k)$

The vertices are k-subspaces of F_q^n and the edges are pairs of subspaces meeting in a (k-1)-subspace.

Johnson graphs are a "part" of Grassmann series for $q \to 1$. The Johnson graph J(n,k) is denoted by $J_1(n,k)$. For a code ${\it C}$ in a graph Γ consider the distance partition with respect to C:

$$C_i = \{x \in V(\Gamma) : d(x, C) = i\},\$$

 $0 \le i \le \rho$, where $\rho = \max_{x \in V(\Gamma)} (d(x, C))$ is the *covering radius* of C.

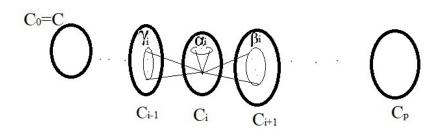


For a code C in a graph Γ consider the *distance partition* with respect to C:

$$C_i = \{x \in V(\Gamma) : d(x, C) = i\},\$$

 $0 \le i \le \rho$.

A code C in Γ is called *completely regular* (shortly CRC) if \exists $\alpha_0,\ldots,\alpha_{\rho},\ \beta_0,\ldots,\beta_{\rho-1},\ \gamma_1,\ldots,\gamma_{\rho}$ such that for any $i\in\{0,\ldots,\rho\}$ any vertex of C_i is adjacent to $\alpha_i,\ \beta_i$ and γ_i vertices of $C_i,\ C_{i+1}$ and C_{i-1} respectively.



A code C in graph Γ is called *completely regular* if $\exists \alpha_0, \ldots, \alpha_\rho$, $\beta_0, \ldots, \beta_{\rho-1}, \gamma_1, \ldots, \gamma_\rho$ such that any vertex of C_i is adjacent to α_i , β_i and γ_i vertices of C_{i-1} , C_i and C_{i+1} respectively.

 $\alpha_0, \ldots, \alpha_\rho$ can be found from β 's and γ 's and the valency of the graph.

The set $\{\beta_0, \dots, \beta_{\rho-1}; \gamma_1, \dots, \gamma_{\rho}\}$ is called the *intersection array* of the completely regular code C.

Designs and q-ary designs

A collection D of k-subspaces (k-subsets when q=1) of F_q^n (of $\{1,\ldots,n\}$) is a $t-(n,k,\lambda)_q$ -design, if any t-subspace of F_q^n (t-element subset of $\{1,\ldots,n\}$) is contained in exactly λ elements of D.

No repeated blocks, so designs are codes in $J_q(n, k)$, $q \ge 1$.

The *strength* of D is the maximum t such that D is a t-design.

For $q \ge 2$, a $1 - (n, k, 1)_q$ -design is called a k-spread.

Strength from intersection array

The *strength* of D is the maximum t such that D is a t-design.

The strength of CRCs in Johnson/Grassmann graphs could be calculated from their intersection array [Martin, 98].

Completely regular codes in Hamming graphs

CRCs in Hamming graphs include: perfect, some BCH, Preparata codes etc.

[Borges, Zinoviev, Rifa]: A survey on CRCs in Hamming and Johnson graphs.

Some CRCs in Grassmann and Johnson graphs

The CRCs of strength 0 and $\rho=1$ in the Grassmann graphs $J_q(n,2)$ coincide with Cameron-Liebler line classes in PG(n-1,q).

• any $(k-1)-(n,k,\lambda)_q$ -design is a CRC in $J_q(n,k)$, $q\geq 1$ [Delsarte] [Martin '98] [Avgustinovich, Potapov].

Theorem [Avgustinovich, M.]

Let D be a (k-1)-(n,k,1)-design. Then

$$\{x: |x| = k+1, |\{y \in D: y \subset x\}| = 0\}$$

is completely regular in J(n, k + 1) with $\rho = 1$.

The theorem hold for the Grassmann graphs as well, but not many $(k-1)-(n,k,1)_q$ -design are known yet: 2-spreads and $2-(13,3,1)_2$ -design [Braun, Etzion, Ostergard, Vardy, Wassermann].

A new series from affine SQS in Johnson graph

Previous results:

ullet Any Steiner quadruple system D of order n is a CRC in J(n,4) with ho=1 [Martin 98].

Theorem [Avgustinovich, M.]

If D is a Steiner quadruple system of order n, then $\{x:|x|=5,|\{y\in D:y\subset x\}|=0\}$ is a completely regular code in J(n,5) with $\rho=1$.

We can go one step further in a special case:

$\mathsf{Theorem}$

If D is the affine SQS (affine 2-subspaces of F_2^m) of order 2^m , then $\{x: |x|=6, |\{y\in D: y\subset x\}|=0\}$ is a completely regular code with $\rho=2$ in $J(2^m,6)$.

A new series from affine SQS in Johnson graph

Previous results:

• Any Steiner quadruple system D of order n is a CRC in J(n,4) with $\rho=1$ [Martin 98].

Theorem [Avgustinovich, M.]

If D is a Steiner quadruple system of order n, then $\{x:|x|=5,|\{y\in D:y\subset x\}|=0\}$ is a completely regular code in J(n,5) with $\rho=1$.

We can go one step further in a special case:

$\mathsf{Theorem}$

If D is the affine SQS (affine 2-subspaces of F_2^m) of order 2^m , then $\{x: |x|=6, |\{y\in D: y\subset x\}|=0\}$ is a completely regular code with $\rho=2$ in $J(2^m,6)$.

A new series from Desarguesian spread in Grassmann graph

- Any 2-spread D is a CRC in $J_q(n,2)$ with $\rho=1$ [Avgustinovich, Potapov], [Martin 98].
- If D is 2-spread, then

$$\{x : dim(x) = 3, |\{y \in D : y < x\}| = 0\}$$

is a CRC in Grassmann graph $J_q(n,3)$ with $\rho=1$. This fact follows from [Avgustinovich, M.], see also [De Winter, Metsch].

Theorem

Let D be a Desarguesian 2-spread. Then

$$\{x : dim(x) = 4, |\{y \in D : y < x\}| = 0\}$$

is a completely regular code in $J_a(n,4)$ with $\rho=2$.

Proposition

A code C is completely regular with $\rho=1$ and intersection array $\{\beta_0; \gamma_1\}$ in a m-regular graph with adjacency matrix A iff its characteristic vector χ_C fulfills

$$A\chi_C = (m - \beta_0)\chi_C + \gamma_1(\overline{1} - \chi_C).$$

Here $\overline{\mathbf{1}}$ is the all-ones vector.

0-1 linear programming for completely regular codes:

[Bamberg] J. Bamberg, There is no Cameron–Liebler line class of PG(3,4) with parameter 6,

http://symomega.wordpress.com/2012/04/01/there-is-no-cameron-liebler-line-class-of-pg34-with-parameter-6

Some CRCs (q-ary 1-designs) in $J_2(6,3)$ could be found using binary linear programming :

$\mathsf{Theorem}$

There are completely regular codes in $J_2(6,3)$ with covering radius 1, intersection array $\{93 - \gamma_1; \gamma_1\}$ for any $\gamma_1 \in \{12, 15, 18, 24, 27, 30\}$. All codes are 1-designs.

The codes are invariant under the following mapping:

$$f: F_{2^6} \to F_{2^6}$$

$$f(b)=b\cdot a^{21},$$

where a is a primitive element of F_{26} .

Таблица: Completely regular codes in $J_2(6,3)$ with $\rho=1$. The intersection array $\{\beta_0,\gamma_1\}$ of a CRC is obtained from its strength s and γ_1 : $98 - \beta_0 - \gamma_1 = 2^{s+1}({1 \choose 1}^{3-s-1})_q)^2 - {s+1 \choose 1}_q$

Design	Integer	Nonexis-,	Existence,	Open cases,
strength	conditions	tence, γ_1	γ_1	γ_1
0	$\gamma_1 \mod 7 = 0$	$21^{FI}, 28^{FI}$	$7^H, 14^{HP}$	
1	$\gamma_1 \mod 3 = 0$	3 ^{M''}	$9^{M}, 21^{M'},$	31, 1 ∈ {2}∪
			31, 1 = 4, 5, 6	$ \{10,\ldots,15\} $
			$8, 9, 10^{A}$	
2	$\gamma_1 \mod 21 = 0$		$21^B, 42^B$	

H subspaces belonging to a hyperplane;

^{HP} subspaces are in a hyperplane H or contain a vector $v, v \notin H$;

A obtained using 0-1 linear programming;

^B correspond to $2 - (6, 3, 3)_2 - \text{and } 2 - (6, 3, 6)_2 - \text{designs [Braun, Kerber, Laue]};$

 $^{^{\}it M}$ totally isotropic subspaces of a symplectic polarity [De Winter, Metsch];

M' the code $\{y: y < F_2^6, dim(y) = 3, |\{x: x \in C, x < y\}| = 0\}$, where C is a 2-spread;

M'' nonexistence follows from [Lemma 21, De Winter, Metsch].

 $^{^{\}it FI}$ correspond to Cameron-Liebler sets; nonexistence was proven in [Filmus, Ihringer].

Main results: 0-1 linear programming for CRCs in $J_2(6,3)$

These results are available as preprint:

Completely regular codes in Johnson and Grassmann graphs with small covering radii, I. Yu. Mogilnykh, arxiv.org/abs/2012.06970

References

[De Winter, Metsch] S. De Winter, K. Metsch Perfect 2-Colorings of the Grassmann Graph of Planes, Electronic Journal of Combinatorics, Volume 27, Issue 1, P1.21 (2020)

[Martin '94] W.J. Martin, Completely regular designs of strength one, Journal of Algebraic Combinatorics, 3:2 (1994), 177–185.

[Martin '98] W.J. Martin, Completely regular designs, J. Combin. Des. 4 (1998) 261–273.

[De Winter, Metsch] S. De Winter, K. Metsch Perfect 2-Colorings of the Grassmann Graph of Planes, Electronic Journal of Combinatorics, Volume 27, Issue 1, P1.21 (2020)

[Avgustinovich, Mogilnykh] S.V. Avgustinovich, I.Yu. Mogilnykh, Induced perfect colorings, Sib. Electron. Math. Rep. 8 (2011) 310-316.

[Avgustinovich, Potapov] S.V. Avgustinovich, V.N. Potapov, Combinatorial designs, difference sets, and bent functions as perfect colorings of graphs and multigraphs, Siberian Mathematical Journal, Vol. 61, No. 5, pp. 867-877, 2020.

References

[Braun, Etzion, Ostergard, Vardy, Wassermann] M. Braun, T. Etzion, P. R. J. Ostergard, A. Vardy, and A. Wassermann. Existence of q-analogs of Steiner systems. Forum of Mathematics, Pi, 2016, Vol. 4, e. 7.

[Cameron, Liebler] P.J. Cameron, R.A. Liebler, Tactical decompositions and orbits of projective groups, Linear Algebra Appl. 46 (1982) 91–102.

[Filmus, Ihringer] Y. Filmus, F. Ihringer, Boolean degree 1 functions on some classical association schemes, Journal of Combinatorial Theory, Series A, (2019) Volume 162 241-270.

References

[Borges, Rifa, Zinoviev] J. Borges, J. Rifa, V.A. Zinoviev, On completely regular codes, Probl. Inf. Transmiss. 55 (2019) 1–45. [Braun, Kerber, Laue] M. Braun, A. Kerber, R. Laue, Systematic Construction of q-Analogs of t-(v, k, l)-designs, Designs, Codes and Cryptography, 34, 55–70, 2005 [Meyerowitz] A. Meyerowitz, Cycle-balanced conditions for distance-regular graphs, Discrete Math. 264 (3) (2003) 149–166. [Vorob'ev '20] K. Vorob'ev, Equitable 2-partitions of Johnson graphs with the second eigenvalue. E-print 2003.10956, 2020. Available at http://arxiv.org/abs/2003.10956

Main results: 0-1 linear programming for CRCs in $J_2(6,3)$

Thank you for your attention