Intersection Distribution and Its Application

Shuxing Li

Simon Fraser University

Supported by PIMS Postdoctoral Fellowship

Joint work with Gohar Kyureghyan and Alexander Pott

Combinatorial Designs and Codes July-14-2021

-∢∃>

ヨト イヨト

When q is a prime power, PP(q) can be derived from finite field \mathbb{F}_q .

3 1 4 3 1

well-behaved (q + 1)-set in PP(q)

イロト 不得下 イヨト イヨト

p prime, $q = p^m$, list of polynomials f over \mathbb{F}_q such that S_f is an oval in PP(q).

• *p* odd, *x*²

-∢∃>

p prime, $q = p^m$, list of polynomials *f* over \mathbb{F}_q such that S_f is an oval in PP(q).

- *p* odd, *x*²
- p = 2, oval-polynomial (o-polynomial) (1) $x^{2^{i}}$, gcd(i, m) = 1(2) x^{6} , m odd (3) $x^{2^{2^{k}}+2^{k}}$, m = 4k - 1(4) $x^{2^{3^{k+1}}+2^{2^{k+1}}}$, m = 4k + 1(5) $x^{3\cdot2^{k}+4}$, m = 2k - 1(6) ...

- ∢ ∃ ▶

p prime, $q = p^m$, list of polynomials *f* over \mathbb{F}_q such that S_f is an oval in PP(q).

- *p* odd, *x*²
- *p* = 2, oval-polynomial (o-polynomial)

(1)
$$x^{2^{i}}$$
, $gcd(i, m) = 1$
(2) x^{6} , $m odd$
(3) $x^{2^{2k}+2^{k}}$, $m = 4k - 1$
(4) $x^{2^{3k+1}+2^{2k+1}}$, $m = 4k + 1$
(5) $x^{3\cdot2^{k}+4}$, $m = 2k - 1$
(6) ...

Observation

 $f \in \mathbb{F}_{2^m}[x]$ is an o-polynomial if and only if (1) f is a permutation polynomial,

(2) f(x) - bx is 2-to-1 for each $b \in \mathbb{F}_{2^m}^*$.

f is an o-polynomial if and only if *f* is a permutation polynomial and f(x) - bx is 2-to-1 for each $b \in \mathbb{F}_{2^m}^*$.

Example (Intersection distribution)

 $\begin{aligned} x^2 \text{ is o-polynomial over } \mathbb{F}_4, \text{ where } \mathbb{F}_4 &= \{0, 1, \alpha, \alpha^2\}.\\ \{x^2 \mid x \in \mathbb{F}_4\} &= \{0, 1, \alpha, \alpha^2\} \xrightarrow{\text{multiplicities}} \{1 \text{ (4 times)}\} \end{aligned}$

 $\begin{aligned} &\{x^2 - x \mid x \in \mathbb{F}_4\} = \{0, 0, 1, 1\} \xrightarrow{\text{multiplicities}} \{0 \text{ (2 times)}, 2 \text{ (2 times)}\} \\ &\{x^2 - \alpha x \mid x \in \mathbb{F}_4\} = \{0, 0, \alpha^2, \alpha^2\} \xrightarrow{\text{multiplicities}} \{0 \text{ (2 times)}, 2 \text{ (2 times)}\} \\ &\{x^2 - \alpha^2 x \mid x \in \mathbb{F}_4\} = \{0, 0, \alpha, \alpha\} \xrightarrow{\text{multiplicities}} \{0 \text{ (2 times)}, 2 \text{ (2 times)}\} \end{aligned}$

the intersection distribution of x^2 : $v_0(x^2) = 6$, $v_1(x^2) = 4$, $v_2(x^2) = 6$.

イロト 不得下 イヨト イヨト 二日

f is an o-polynomial if and only if f is a permutation polynomial and f(x) - bx is 2-to-1 for each $b \in \mathbb{F}_{2^m}^*$.

→ < ∃→

Definition (Intersection distribution)

The intersection distribution of $f \in \mathbb{F}_q[x]$ is a sequence $(v_i(f))_{i=0}^q$, where

 $v_i(f) = |\{(b,c) \in \mathbb{F}_q^2 \mid f(x) - bx - c = 0 \text{ has exactly } i \text{ solutions in } \mathbb{F}_q\}|.$

Geometric interpretation

The graph of f: $\{(x, f(x)) \mid x \in \mathbb{F}_q\}$.

 $v_i(f)$: number of non-vertical lines intersect the graph of f in exactly ipoints.

イロト イポト イヨト イヨト

Proposition (Li and Pott (2020))

 $\{v_i(f) \mid 0 \le i \le q\} \Longleftrightarrow \{u_i(S_f) \mid 0 \le i \le q+1\}.$

- - E + - E +

characterization of o-polynomial	\iff	characterization of x^2 -like polynomial (polynomial with the same		
o-polynomial	\longleftrightarrow	intersection distribution as x^2)		

The next simplest case: characterization of x^3 -like monomial.

æ

- ∢ ∃ ▶

Theorem (Kyureghyan, Li, and Pott (2021))

q a power of prime p. Let $f(x) = x^3 - ax^2$ be a polynomial over \mathbb{F}_q .

	$v_0(f)$	$v_1(f)$	$v_2(f)$	$v_3(f)$
$p \neq 3$	$\frac{q^2 - 1}{3}$	$\frac{q^2 - q + 2}{2}$	q-1	$\frac{q^2 - 3q + 2}{6}$
p = 3 $a = 0$	$\frac{q(q-1)}{3}$	$\frac{q(q+1)}{2}$	0	$\frac{q(q-1)}{6}$
p = 3 $a \neq 0$	$\frac{q^2}{3}$	$\frac{q(q-1)}{2}$	q	$\frac{q(q-3)}{6}$

Corollary

Let q be a prime power and f arbitrary degree three polynomial over \mathbb{F}_q . We know the number of lines in PP(q) intersecting S_f in 0, 1, 2 and 3 points.

Shuxing Li (Simon Fraser University)

Theorem (Kyureghyan, Li, and Pott (2021))

q a power of prime p. Let $f(x) = x^3$ be over \mathbb{F}_q .

	$v_0(f)$	$v_1(f)$	$v_2(f)$	$v_3(f)$
<i>p</i> ≠ 3	$\frac{q^2 - 1}{3}$	$\frac{q^2 - q + 2}{2}$	q-1	$\frac{q^2 - 3q + 2}{6}$
<i>p</i> = 3	$\frac{q(q-1)}{3}$	$\frac{q(q+1)}{2}$	0	$\frac{q(q-1)}{6}$

Some necessary conditions of x^3 -like monomials have been derived.

Conjecture (Kyureghyan, Li, and Pott (2021))

Up to taking the inverse, all x^3 -like monomials over $\mathbb{F}_q = \mathbb{F}_{p^m}$:

For x^2 -like monomials: 1) p = 2, o-monomials, 2) p > 2, x^2 .

Theorem (Li, Li, and Qu (preprint))

The two conjectured families of x^3 -like monomials x^d over \mathbb{F}_{3^m} have been confirmed:

- $d = 3^{(m+1)/2} + 2$, m odd,
- $d = 2 \cdot 3^{m-1} + 1$, m odd.

These two families are analogies of the o-polynomials in characteristic 3.

Steiner triple system form x^3 -like polynomials

f is a x^3 -like polynomial over \mathbb{F}_{3^m}

point set: \mathbb{F}_{3^m}

block set: $\{x_1, x_2, x_3\}$ is a block $\Leftrightarrow (x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))$ three collinear points on the graph $\{(x, f(x)) | x \in \mathbb{F}_{3^m}\}$.

 $x^{3^{(m+1)/2}+2}$ over \mathbb{F}_{3^m} , m odd $x^{2\cdot 3^{m-1}+1}$ over \mathbb{F}_{3^m} , m odd

Steiner triple systems over 3^m points for each odd $m \ge 3$

new when $m \in \{3, 5\}$

- - E + - E +

3

Main References

- (1) S. Li, A. Pott, Intersection distribution, non-hitting index and Kakeya sets in affine planes, *Finite Fields and Their Applications*, 2020.
- (2) G. Kyureghyan, S. Li, A. Pott. On the intersection distribution of degree three polynomials and related topics, *Electronic Journal of Combinatorics*, 2021.
- (3) Y. Li, K. Li, L. Qu. On two conjectures about the intersection distribution, *arXiv:2010.00312*.