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Main definitions

The Galois field of the characteristic 2 is denoted by GF (2m).
We denote a primitive element of the Galois field GF (2m) by α.
The vector space of all vectors over F = GF (2) of length n = 2m

we denote by Fn.
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A code is called linear if it is a linear subspace of Fn.
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The classical binary Reed – Muller code of order r , 0 ≤ r ≤ m,
for any m ≥ 1 is defined as the set of all vectors of length 2m

corresponding to the boolean functions of m variables of degree
not more than r .
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The Reed – Muller code is linear
has the following parameters:
the length n of the code is 2m,
the size 2k , k =

∑r
i=0

(m
i

)
the code distance (the minimum value of the Hamming distance
between any two different codewords from the code) is 2m−r .
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The code is called self-complementary if for any codeword x the
code contains the vector x + 1n, where 1n is the all-ones vector of
length n.

The Reed – Muller code is self-complementary.

A binary self-complementary code with the parameters of the
classical Reed – Muller code is called a Reed – Muller like code.
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Reed – Muller like code is not necessarily linear.

The class of the codes contains rich families of Reed – Muller like
codes obtained in

[A. K. Pulatov, Lower bound on a complexity of the circuit
implementation for one class of codes. Diskretn. Analiz, Novosibirsk. V.
25 (1974) 56–61 (in Russian).]

[ C. L. Liu, B. G. Ong, G. R. Ruth, A construction scheme for linear and
non-linear codes. Discrete Math. V. 4 (1973) 171–184.]

[F. I. Solov’eva, On binary non-group codes, Metody Diskretn. Anal. V.

(1981) 65–76 (in Russian).]
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The class of the Reed – Muller like codes contains families of not
only perfect and Hadamard codes but also known Z4-linear Reed –
Muller codes:

[F. I. Solov’eva, On Z4-linear codes with parameters of Reed–Muller
codes, Problems of Information Transmission, 43(1) (2007), 26–32.]

[ J. Pujol, J. Rifà and F. I. Solov’eva, ”Construction of Z4-Linear
Reed–Muller Codes”, IEEE Transactions of Information Theory, vol. 55,
no. 1, pp. 99–104, 2009.]
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The class of the Reed – Muller like codes contains families of linear
codes spanned by the blocks of some polarity designs.

[M. Harada, E. Novak and V. D. Tonchev, ”The weight distribution of
the self-dual [128; 64] polarity design code”, Advances in Mathematics of
Communications, vol. 10, no. 3, 2016, 643-648.]

[ D. Clark, V. D. Tonchev, ”A new class of majority-logic decodable
codes derived from polarity designs”, Advances in Mathematics of
Communications, vol. 7, no. 2, pp. 175–186, 2013.]
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In 1994 Etzion and Vardy proposed the following problem: what is
the size of the intersection of any two binary perfect codes?

[T. Etzion, A. Vardy, ”Perfect binary codes: Constructions, properties
and enumeration”, IEEE Trans. Inform. Theory, vol. 40, no. 3, pp.
754–763, 1994.]
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Survey

A deep contribution for an investigation of the intersection number
problem was done for perfect codes and Hadamard codes, see the
survey

[F. I. Solov’eva, ”Survey on perfect codes”, Mathematical Problems of
Cybernetics, vol. 18, pp. 5–34, 2013 (in Russian).]
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In 1997 the intersection problem for all q-ary linear codes, q ≥ 2
was solved by Bar-Yahalom and Etzion including the intersection
problem for binary Reed – Muller codes.

For some permutation π of order 2m the Reed – Muller code
RMr ,m of order r satisfies |RMr ,m ∩ π(RMr ,m)| ≥ 2, where 2 (the
minimum one!) is attainable only for r ≤ [(m − 1)/2].

[ S. E. Bar-Yahalom, T. Etzion, ”Intersection of isomorphic linear codes”,
Journal of Combin. Theory, Series A, vol. 80, pp. 247–256, 1997.]
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In 1998 it was shown by Etzion and Vardy that for each m ≥ 3
there exist two binary perfect nonlinear codes of length 2m − 1
with the intersection of size 2.

[T. Etzion, A. Vardy, ”On perfect codes and tilings: problems and
solutions”, SIAM J. Disc. Math., vol. 11, no. 3, pp. 205–223, 1998.]
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It was proved that for any two integers k1 and k2 satisfying
1 ≤ ks ≤ 2(n+1)/2−log(n+1), s = 1, 2, there exist perfect codes C1

and C2, both of length n = 2m − 1, m ≥ 4, with |C1 ∩C2| = 2k1k2.

It was established that for any even number k such that
0 ≤ k ≤ 2n+1−2 log(n+1) there exist binary perfect codes C1 and C2

of length n = 2m − 1, m ≥ 4 satisfying |C1 ∩ C2| = k .

[S. V. Avgustinovich, O. Heden, F. I. Solov’eva, ”On intersections of
perfect binary codes”, Bayreuther Mathematische Schriften, vol. 71, pp.
8–13, 2005.]

[S. V. Avgustinovich, O. Heden, F. I. Solov’eva, ”On intersection problem
for perfect binary codes”, Des., Codes and Cryptogr., vol. 39, pp.
317–322, 2006.]
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Main results

We investigate the following question: what is the size of the
intersection of two Reed – Muller like codes?

Denote the Reed – Muller like code of order r having length 2m by
LRMr ,m and its punctured code by LRM∗r ,m. Let λ be any function
from LRM∗r−1,m−1 to {0, 1}.

Pulatov switching construction 1974

The set

{(x + y , x , |x |+ λ(y)) : x ∈ LRM∗r ,m−1, y ∈ LRM∗r−1,m−1}.

is a punctured Reed – Muller like code of order r of length 2m.
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Further we use two special extended Reed – Muller like codes given
by the Pulatov construction 1974.
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Let y be a fixed vector from LRMr−1,m−1 and
Ry = {(x + y , x)|x ∈ RMr ,m−1}. Let λ be any function from
RMr−1,m−1 to {0, 1}; π(x1, . . . , xn/2) = (xn/2, x1, . . . , xn/2−1).

The codes Dλ and D ′λ′ :

For a fixed integer i , 1 ≤ i ≤ 2m−1 we define the Reed – Muller
like code Dλ = D0 ∪ D1, where

D0 =
⋃

y∈RMr−1,m−1, λ(y)=0

Ry ,

D1 =
⋃

y∈RMr−1,m−1, λ(y)=1

(Ry + (ei , ei )),

D ′λ′ = π(Dλ′) = {(u, π(v)) | (u, v) ∈ Dλ′}.

F. I. Solov’eva Reed – Muller like codes and their intersections



Introduction
Survey

Main results

Main results

Let y be a fixed vector from LRMr−1,m−1 and
Ry = {(x + y , x)|x ∈ RMr ,m−1}. Let λ be any function from
RMr−1,m−1 to {0, 1}; π(x1, . . . , xn/2) = (xn/2, x1, . . . , xn/2−1).

The codes Dλ and D ′λ′ :

For a fixed integer i , 1 ≤ i ≤ 2m−1 we define the Reed – Muller
like code Dλ = D0 ∪ D1, where

D0 =
⋃

y∈RMr−1,m−1, λ(y)=0

Ry ,

D1 =
⋃

y∈RMr−1,m−1, λ(y)=1

(Ry + (ei , ei )),

D ′λ′ = π(Dλ′) = {(u, π(v)) | (u, v) ∈ Dλ′}.

F. I. Solov’eva Reed – Muller like codes and their intersections



Introduction
Survey

Main results

Main results

Let y be a fixed vector from LRMr−1,m−1 and
Ry = {(x + y , x)|x ∈ RMr ,m−1}. Let λ be any function from
RMr−1,m−1 to {0, 1}; π(x1, . . . , xn/2) = (xn/2, x1, . . . , xn/2−1).

The codes Dλ and D ′λ′ :

For a fixed integer i , 1 ≤ i ≤ 2m−1 we define the Reed – Muller
like code Dλ = D0 ∪ D1, where

D0 =
⋃

y∈RMr−1,m−1, λ(y)=0

Ry ,

D1 =
⋃

y∈RMr−1,m−1, λ(y)=1

(Ry + (ei , ei )),

D ′λ′ = π(Dλ′) = {(u, π(v)) | (u, v) ∈ Dλ′}.

F. I. Solov’eva Reed – Muller like codes and their intersections



Introduction
Survey

Main results

Main results

Theorem 1.

For any m ≥ 4 and r , 1 ≤ r ≤ m− 2, and numbers k1, k2 such that
1 ≤ ks ≤ |RMr−1,m−1|, s ∈ {1, 2} there are two Reed – Muller like
codes of order r of length 2m with the intersection of size 2k1k2.
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Dλ = Dλ(RMr−1,m−1) and D ′λ′ = D ′λ′(ν(RMr−1,m−1)), where ν is
a transposition of the first two coordinate positions of RMr−1,m−1:

Theorem 2.

For any m ≥ 4 and r , 1 ≤ r ≤ m − 2, and any number k such that

0 ≤ k ≤ |RMr−1,m−1|2

there are two Reed – Muller like codes of order r of length 2m with
the intersection of size k.
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Conclusion

We proved that

1. There exist two LRMr ,m codes of order r having lengths at least
16 with the intersection number equaled 2k1k2, where
1 ≤ ks ≤ |RMr−1,m−1|, s ∈ {1, 2}.

2. There exist two LRMr ,m codes of order r having lengths at least
16 with the intersection number equaled k , where
0 ≤ k ≤ |RMr−1,m−1|2.

3. The sets of numbers given in Theorems 1 and 2 do not intersect
each other.

4. The minimum intersection number equaled 2 is also attainable
for Reed – Muller like codes.
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Conclusion

5. The results above are valid for punctured Reed – Muller like
codes of order r with length 2m − 1.

6. We used the Reed – Muller like codes presented by Pulatov in
1974.

7. We generalize the results of Bar Yashalom at al.1997, Etzion
1998, Avgustinovich at al. 2005 and 2006.
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