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CAZAC sequences - Introduction



2

Sequences, whose entries are complex unimodular

values with near perfect auto-correlation properties, 

have many applications in communication systems 

such as Code Division Multiple Access (CDMA) 

systems, radar, signal processing and code design. 

Sequences and their higher dimensional counterparts 

(arrays) are critical in today’s technological world 

where they are used in radar, error correction, digital 

communication, etc. 

A good treatise on sequences with good correlation 

properties was written by Golomb and Gong [1]. 

Constant Amplitude (CA), Zero Auto Correlation 

(ZAC) sequences (or CAZAC sequences) are 

sometimes referred to as Perfect sequences (because 

of the ZAC property) with unit magnitude (because 

of the CA property) [2], [3]. 



CAZAC sequences – origins and uses

• The study of CAZAC property originates in radar and communication theory.

• The constant amplitude part of the property ensures the ability to transmit signals at 

peak power constantly, while the zero autocorrelation part of the property ensures 

that returning radar signals do not interfere with outgoing signals. 

• Frank-Zadoff-Chu, P4, and Wiener sequences are three classes of sequences that are 

indeed CAZAC. 

• They belong to a class of sequences known as chirp sequences.

• CAZAC sequences are used in 4G LTE (Long Term Evolution) wireless standard 

[4] and in the development of 5G wireless communication technology [5], [6]. 

• CAZAC sequences are important in waveform design because of their optimal 

transmission efficiency and tight time localization properties. 

• There is an extensive literature on CAZACs because of the importance of such 

sequences in communications, coding theory, cryptology, and radar (see Benedetto 

et al. [2], [7] and references therein). 
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CAZAC sequences – our investigations

• The work presented herein has resulted in the 

discovery of new infinite sets of pairs of sequences 

all of whose out-of-phase periodic auto-correlation 

values may be set to an arbitrary and desirable (small) 

value. 

• The motivation of our constructions stems from the 

Björck sequence and we call the constructed 

sequences Björck-like sequences. 

• For more details on the original Björck construction 

see [8], [9], [10].
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GROUP RINGS

 Let G be a multiplicatively written abelian group of order v. Let 

Z[G] denote the group ring of G over the ring Z of integers. 

 A subset S of G is identified with the group ring element which 

is a formal sum of the elements of S (i.e. with coefficients 0 and 

1);  and for an element A of Z[G] and integer t, A(t) denotes the 

image of A under the group homomorphism x to xt, extended 

linearly to all of Z[G].
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Bjorck sequences - characterization

Theorem 1.

Let 𝐵 = 1 + 𝛼𝑆 + ത𝛼𝑁

with |α|= 1 be the Björck sequence with the sets S and N representing the square and 

non-square entries of GF(q), where q ≡ 1 (mod 4). Then only the following constants α

1

𝑞 + 1
±

1

𝑞 + 1
2 − 1 ,

−1

𝑞 − 1
±

1

𝑞 − 1
2 − 1 .

will provide perfect periodic auto-correlations for the sequence B. That is, BB^(−1) = q
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Bjorck sequences – our results

Remarks: 

• (i) we show that Björck’s theme for primes p with p ≡ 

1 (mod 4) would work for only two sets of parameters 

η

• (ii) Björck’s theme for primes p with p ≡ 1 (mod 4); 

We actually prove this result for all prime powers q 

by working in GF(q) and the resulting higher 

dimensional arrays could hence be termed as Björck

arrays as in the terminology of [11].

• (iii) Our analysis provides a second value for α
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Björck-like Sequences with Constant Periodic Auto-

Correlations

• We next examine more closely the Bjorck-Like sequence 

defined by 𝐵 = 1 + 𝛼𝑆 + ത𝛼𝑁 where its periodic auto-

correlation is given by 𝐵𝐵(−1) = 𝑞 + 𝜖 𝐺 − 1

• Theorem 2. A pair of Björck-like sequences of length q, with 

q ≡ 1 (mod 4), exists such that for any 𝜖 and the sequence B = 

1 + 𝛼𝑆 + ത𝛼𝑁 satisfying BB(−1) = q + 𝜖 (G − 1), exists if and 

only if 

𝛼 =
𝛽 ± 𝛽2 − 4

2
and

𝛽 =
−2 ± 2 𝑞 1 + 𝜖 − 𝜖

𝑞 − 1
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Restrictions on the Length q and Parameter for 

Björck-like Sequences

• Theorem 3. For a Björck-like sequence to exist with 

length q, with q ≡ 1 (mod 4), and correlation 

parameter , the following four conditions are 

necessary and sufficient as a whole:

• 𝑞 ≥ 𝜖

• 𝑞 + 𝑞𝜖 − 𝜖 ≥ 0

• 2 − 𝑞 ≤ 𝑞 + 𝑞𝜖 − 𝜖 ≤ 𝑞

• 2 − 𝑞 ≤ − 𝑞 + 𝑞𝜖 − 𝜖 ≤ 𝑞

When 𝜖 ≤ 1, all four conditions are valid.
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The Case of Björck-like Sequences of Length q ≡ 3 

(mod 4)

• we look at the case of the Björck-like sequence but 

for lengths q ≡ 3 (mod 4). We first examine B = 1 + 

αS + ¯αN followed by the case of B = i + αS + ¯αN. 

• Theorem 4. For length q ≡ 3 (mod 4), the only 

Björck-like sequence, B = 1 + αS + ¯αN, with 

constant periodic auto-correlation is when α = ±1.

• Theorem 5. For length q ≡ 3 (mod 4), the only 

Björck-like sequence, B = i + αS + ¯αN, with 

constant periodic auto-correlation is when α = ±1.
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A New Björck-like Vari-Angular Sequence of Length 

q ≡ 1 (mod 4)

• Here we examine a unimodular three-valued Björck-
like sequence of the form B = e iθ + αS + N which has 
constant periodic auto-correlations. 

• We show that the parameter θ is free to vary but can 
be optimized to minimize the value of the 
correlations. 

• Theorem 6. The three-valued unimodular sequence B 
= e iθ + αS + N of length q ≡ 1 (mod 4) has constant 
periodic auto-correlations when α = 1 or e 2iθ .

• Remarks: What auto-correlation values this sequence 
achieves? :  

2cos(θ) + (q – 1)/2 * cos(2θ) + (q – 3)/ 2 whose min 
value is −q /(q – 1) when cos(θ) = −1 /(q−1).
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Above Vari-Angular Sequences toward MIMO

Remark: In Theorem 6 (for the case q ≡ 1 (mod 4)), we 
obtain a three-valued (almost 2-valued as one value e iθ

occurs only once and the other two values 

e 2iθ and 1 occur equally often) unimodular nearly 
perfect family of sequences. This one-parameter infinite 
family (θ being the parameter) may be of interest in 
MIMO type applications. Toward that, we introduce a 
new performance measure we term as cross merit factor 
which reduces to the classical GMF when a single 
sequence is employed. (we skip details in the interest of 
time).
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Saffari’s theme

• Clever analysis of Saffari [9] fully settles the general 
parameter characterization of two-valued CAZAC 
sequences. 

• We state it as a theorem: 

• Theorem 7. (Saffari [9]) Two-valued CAZACs exist 
for lengths N ≥ 3 if and only if a) N ≡ 3 (mod 4) and 
there exist a Hadamard-Paley difference set of length 
N, or b) N ≡ 0 (mod 4) and there exists a Hadamard-
Menon difference set of length N. 

• Remarks: It follows that two-valued CAZACs 
cannot exist for lengths N ≡ 1 (mod 4). 

• In this case, Björck CAZAC sequences are almost 
two-valued. 
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Extending Saffari’s theme

• We wish to solve the problem of finding abelian 
groups G of order v that contain a suitable subset D 
such that the group ring element X = 1 + αD + β(G − 
D − 1) (for suitable unimodular complex numbers α 
and β) satisfies XX∗ is a constant (i.e., X gives rise to 
a G-developed CAZAC and reduce to CAZAC 
sequences when G is cyclic). 

• This problem, in its full generality, seems a bit too 
hard. 

• With an additional modest assumption when β = ¯α, 
we are able to provide a very satisfactory solution 
which, in spirit, resembles the aforementioned 
celebrated result of Saffari (Theorem 7  above). 
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Ingredients from theory of partial difference sets

We require some ingredients from the theory of PDS. 

PDS in abelian groups G have been thoroughly studied; 

see [14] for a survey of older results and [17], [18], 

[19], [20], [21], [22], [23], [24] (and references therein) 

for a number of very recent results.
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Almost two-valued CAZACs fully characterized

Theorem 8

• 1) Almost two valued CAZACs X = 1 + αD + β(G − D − 1) with 
β = ¯α exist in an abelian group G of order v if and only if v ≡ 1 
(mod 4) and D is a partial difference set in G with Paley type 
parameters (v, (v−1)/ 2 , (v−5)/ 4 , (v−1) 4 ), and hence v is a 
prime power and v ≡ 1 (mod 4), or v = n 4 or 9n 4 , with n > 1 an 
odd positive integer. 

• 2) The only permissible values of α are those given in Theorem 1. 

• 3) Furthermore, if G is cyclic, then v must be a prime (call it p) 
and D must be the classical Paley PDS (consisting of quadratic 
residues mod p), whence our almost two-valued CAZAC 
sequences X must be precisely Björck’s original sequences 
characterized in Theorem 1.
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Almost two-valued CASACs fully characterized

• Adapting the proof of Theorem 8, we can now easily characterize 
almost two valued CASACs with similar parameters along the same 
vein. 

Theorem 9. 

• 1) Almost two-valued CASACs X = 1 + αD + β(G− D − 1) with β = 
¯α exists in an abelian group G of order v if and only if v ≡ 1 (mod 
4) and D is a partial difference set in G with Paley type parameters 
(v, (v−1)/ 2 , (v−5)/ 4 , (v−1)/ 4 ), and hence v is a prime power and 
v ≡ 1 (mod 4), or v = n 4 or 9n 4 , with n > 1 an odd positive integer. 

• 2) The only permissible values of α are those given in Theorem 2. 

• 3) Furthermore, if G is cyclic, then v must be a prime (call it p) and 
D must be the classical Paley PDS (consisting of quadratic residues 
mod p), whence our almost two-valued CASAC sequences X must 
be precisely Björck’s original sequences characterized in Theorem 2.
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