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Heffter Arrays

Definition (Archdeacon 2015)

Let v = 2nk + 1 be a positive integer. A square H(n; k) Heffter array over
Zv is an n × n partially filled array with elements in Zv such that:

a) each row and each column contains k filled cells;

b) for every x ∈ Zv \ {0}, either x or −x appears in the array;

c) the elements in every row and column sum to 0.

Heffter arrays are combinatorial objects introduced by D.S. Archdeacon in
2015 in order to obtain:

orthogonal k-cycle decompositions of complete graphs;

biembeddings of complete graphs in orientable surfaces.
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Relative Heffter Arrays

Definition (S.C., Morini, Pasotti, Pellegrini 2020)

Let v = 2nk + t be a positive integer and let J be the subgroup of Zv of
order t. A square Ht(n; k) Heffter array over Zv relative to J is an n × n
partially filled array with elements in Zv such that:

a) each row and each column contains k filled cells;

b1) for every x ∈ Zv \ J, either x or −x appears in the array;

c) the elements in every row and column sum to 0.

If t = 1, namely if J is the trivial subgroup of Z2nk+1, we find again
the classical concept of Heffter array.
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λ-fold Heffter Arrays

Definition (S.C., Pasotti 2021)

Let v = 2nk
λ + t be a positive integer, and let J be the subgroup of Zv of

order t. A square λHt(n; k) λ-fold Heffter array A over Zv relative to J is
an n × n partially filled array with elements in Zv such that:

a) each row and each column contains k filled cells;

b2) the multiset {±x | x ∈ A} contains λ times each element of Zv \ J;

c) the elements in every row and column sum to 0.

If λ = 1, we find again the concept of relative Heffter array.

Generalizations of Heffter arrays and biembedding (multi)graphs on surfaces 7 / 15



λ-fold Heffter Arrays

Definition (S.C., Pasotti 2021)

Let v = 2nk
λ + t be a positive integer, and let J be the subgroup of Zv of

order t. A square λHt(n; k) λ-fold Heffter array A over Zv relative to J is
an n × n partially filled array with elements in Zv such that:

a) each row and each column contains k filled cells;

b2) the multiset {±x | x ∈ A} contains λ times each element of Zv \ J;

c) the elements in every row and column sum to 0.

If λ = 1, we find again the concept of relative Heffter array.

Generalizations of Heffter arrays and biembedding (multi)graphs on surfaces 7 / 15



The following array A is a H6(10; 6) whose elements belong to
Z126 \ {0,±21,±42, 63}.

−1 5 2 −7 −9 10

3 −4 −6 8 11 −12

−13 17 14 −19 25 −24

15 −16 −18 20 −23 22

−26 30 27 −32 −34 35

28 −29 −31 33 36 −37

41 −45 −38 47 44 −49

−39 43 40 −46 −48 50

52 −57 −59 60 −51 55

−56 58 61 −62 53 −54

Let π : Z126 → Z63 be the natural projection. Then π(A) is a 2H3(10; 6).

Remark (S.C., Pasotti 2021)

Given an αHt(n; k) over Zv and a divisor λ of t, we obtain an αλH t
λ

(n; k)

over Zv/λ via projection map π : Zv → Zv/λ.
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Biembeddings

Definition

An embedding σ of a (multi)graph Γ in a surface Σ is a continuous
injective map between the topological representation of Γ and Σ.

Definition

The connected components of Σ \ σ(Γ) are called faces of the embedding.

Definition

A biembedding of a (multi)graph Γ in a surface Σ is a face 2-colorable
embedding of Γ in Σ.
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The following is a biembedding of K7 in the torus.
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Some Technical Requirements

Given a set T ⊆ Zv and an ordering ω = (t1, t2, . . . , tk) of the elements in
T , let si =

∑i
j=1 tj .

We say that the ordering ω is simple (modulo v) if si 6= sh for i 6= h.

Definition

A λHt(n; k) is said to be simple if its rows and columns admit a simple
ordering (modulo v = 2nk

λ + t).

Given a λHt(n; k), we set

ωr = ωR1 ◦ . . . ◦ ωRn ;

ωc = ωC1 ◦ . . . ◦ ωCm .

Definition

Then ωr and ωc are said to be compatible if ωc ◦ωr is a cycle of length nk.
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Biembeddings of Complete Multipartite (Multi)Graphs

Theorem (S.C., Pasotti 2021; S.C., Pasotti, Pellegrini 2020)

Given a simple λHt(n; k) with respect to the compatible orderings ωr and
ωc . Then there exists a biembedding of the graph λK( 2nk

λt
+1)×t in an

orientable surface whose faces (boundary) are simple cycles of length k.

Theorem (S.C., Pasotti 2021; S.C., Pasotti, Pellegrini 2020)

There exists a biembedding of λK( 2nk
λt

+1)×t in an orientable surface whose

faces are simple cycles of length k in each of the following cases:

λ t k n

λ = 1 t = k k ∈ {3, 5, 7, 9} n ≡ 3 (mod 4)

λ = 2 t = 1 k = 3 n ≡ 1 (mod 4)

λ = 3 t = 1 k = 3 n ≡ 3 (mod 4)

λ = 2 t = 1 k = 5 n ≡ 3 (mod 4)

λ = 1 and λ|t t ∈ {n, 2n} k = 3 n ≡ 1 (mod 2)
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Covering Space

Let Σ′ and Σ be topological spaces. We say that Σ′ is a covering space for
Σ if there exists a covering map p : Σ′ → Σ such that:
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A Topological Consideration

Let A be an αHt(n; k) over Zv (where v = 2nk
α + t) and let B be the

αλH t
λ

(n; k) obtained from A via projection map π : Zv → Zv/λ.

Theorem (S.C., Pasotti 2021)

If B originates a biembedding σ : αλK( 2nk
αt

+1)× t
λ
→ Σ, also A generates a

biembedding σ′ : αK( 2nk
αt

+1)×t → Σ′ that is a covering space for Σ.

Denoted by p the covering map, the following diagram commutes:
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Thanks for your attention
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