Neighbour-transitive codes in generalised quadrangles

Dan Hawtin, University of Rijeka – (joint work with Dean Crnković and Andrea Švob) July 14, 2021

Combinatorial Designs and Codes, Rijeka (virtually)

Delsarte and Biggs independently introduced the concept of a code in a graph in 1973

- \cdot graph arGamma with vertex set VarGamma
- \cdot code C in arGamma is a subset of VarGamma
- graph metric means definitions from classical coding theory make sense

Delsarte and Biggs independently introduced the concept of a code in a graph in 1973

- \cdot graph arGamma with vertex set VarGamma
- \cdot code C in arGamma is a subset of VarGamma
- graph metric means definitions from classical coding theory make sense

Graphs most commonly considered are the Johnson and Hamming graphs

Let C be a code in a graph \varGamma

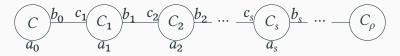
Important parameters:

- minimum distance of C: δ smallest distance between distinct codewords
- \cdot covering radius of C: ρ largest distance between a vertex of \varGamma and its nearest codeword

A code C in Γ gives rise to a partition $\{C_i\}_{i=0}^{\rho}$ of $V\Gamma$, where C_i is the set of vertices distance i to their nearest codeword.

$$\fbox{C} - \r{C_1} - \r{C_2} - \cdots - \r{C_s} - \cdots - \r{C_\rho}$$

A code C in Γ gives rise to a partition $\{C_i\}_{i=0}^{\rho}$ of $V\Gamma$, where C_i is the set of vertices distance i to their nearest codeword.



Definition (Delsarte 1973)

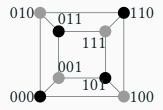
A code *C* is *s*-regular if for all $i \leq s$ there exist integers a_i, b_i, c_i (as above) depending only on *i* giving the number of adjacent vertices for each $\alpha \in C_i$.

A code that is ho-regular is called *completely regular*.

Automorphisms Groups

Definition

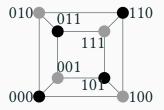
The automorphism group $\operatorname{Aut}(C)$ of a code C in Γ is the set-wise stabiliser of C inside $\operatorname{Aut}(\Gamma)$.



Automorphisms Groups

Definition

The automorphism group $\operatorname{Aut}(C)$ of a code C in Γ is the set-wise stabiliser of C inside $\operatorname{Aut}(\Gamma)$.

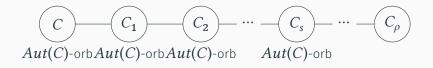


E.g. Interchanging the inner and outer pairs of vertices is an automorphism of H(3, 2) but not of C, whilst a reflection on a diagonal is an automorphism of both.

Definition

A code C is s-neighbour-transitive (s-NT) if Aut(C) acts transitively on C_i for each $i \leq s$.

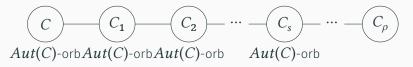
If C is ρ -NT then C is said to be completely transitive (CT).



Definition

A code C is s-neighbour-transitive (s-NT) if Aut(C) acts transitively on C_i for each $i \leq s$.

If C is ρ -NT then C is said to be completely transitive (CT).



CT-ity originally introduced by Solé (1987) – above definition due to Giudici and Praeger (2000).

Work has been done on:

- NT codes in Johnson graphs Liebler and Praeger, Neunhoffer and Praeger, Iopollo's PhD thesis.
- CT codes in Hamming graphs Giudici and Praeger, Gillespie's PhD thesis, Bailey and Hawtin.
- NT codes in Hamming graphs Gillespie's PhD thesis.
- 2-NT codes in Hamming graphs H. thesis; Gillespie, Giudici, H. and Praeger.

Generalised quadrangles

A generalised quadrangle (shortly a GQ) – introduced by Tits (1959) – is an incidence structure $\mathcal{Q} = (\mathcal{P}, \mathcal{L}, I)$, where \mathcal{P} and \mathcal{L} are sets called points and lines, respectively, and I is a symmetric point-line incidence relation such that:

- 1. Each point is incident with t + 1 lines ($t \ge 1$) and two distinct points are incident with at most one line.
- 2. Each line is incident with s + 1 points ($s \ge 1$) and two distinct lines are incident with at most one point.
- 3. If p is a point and L is a line not incident with p, then there is a unique pair $(q, M) \in \mathscr{P} \times \mathscr{L}$ for which $p \mathrel{\mathrm{I}} M \mathrel{\mathrm{I}} q \mathrel{\mathrm{I}} L$.

Classical GQs

Classical GQs are associated with certain classical groups and isotropic points and lines of projective geometries under certain bilinear/sesquilinear forms.

Q	order	\mathcal{Q}^D	$\operatorname{Aut}(\mathcal{Q})$
$Q_4(q)$	(q,q)	$W_{3}(q)$	$\mathrm{P}\Gamma\mathrm{O}_{5}(q)$
$Q_5^-(q)$	(q, q^2)	$H_{3}(q^2)$	$\mathrm{P}\Gamma\mathrm{O}_{6}^{-}(q)$
$W_{3}(q)$	(q, q)	$Q_4(q)$	$\mathrm{P}\Gamma\mathrm{Sp}_{4}(q)$
$H_{3}(q^2)$	(q^2, q)	$Q_5^-(q)$	$\mathrm{P}\Gamma\mathrm{U}_{4}(q)$
$H_4(q^2)$	(q^2, q^3)	$H_4(q^2)^D$	$\mathrm{P}\Gamma\mathrm{U}_{5}(q)$

We will be interested mainly in $W_3(q)$.

Note that there are various other constructions for GQs, but we won't consider these.

The point-line incidence graph Γ of a GQ $\mathcal{Q} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ is defined on the vertex set $V\Gamma = \mathcal{P} \cup \mathcal{L}$ with adjaceny given by I.

Properties of Γ :

- bipartite
- diameter 4
- $\cdot \,\, \text{girth} \,\, 8$

The point-line incidence graph Γ of a GQ $\mathcal{Q} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ is defined on the vertex set $V\Gamma = \mathcal{P} \cup \mathcal{L}$ with adjaceny given by I.

Properties of Γ :

- bipartite
- diameter 4
- \cdot girth 8

An code C in Γ with $\delta = 4$ is either a partial ovoid or a partial spread, if $\rho = 2$ then C is either an ovoid or a spread, and if $\rho = 3$ then C is either a maximal partial ovoid or a maximal partial spread.

Theorem (Crnković , H., Švob)

Let C be a NT code with $\delta = 4$ and $\rho = 2$ in a thick classical GQ and assume that Aut(C) is insoluble. Then C is equivalent to one of the following:

- 1. The regular spread of $W_3(q)$.
- 2. A classical ovoid of $H_3(q^2)$.

Proof applies a theorem of Bamberg and Pentilla on transitive *m*-systems in polar spaces.

Examples in $W_3(q)$

- $V \cong \mathbb{F}_q^4$ equipped with the symplectic form $f(x, y) = x_1y_2 - x_2y_1 - x_3y_4 + x_4y_3$
- \cdot *G* a sharply transitive subgroup of $\mathrm{SL}_2(q)$ (below)
- $\cdot C = \{ \begin{bmatrix} I & A \end{bmatrix} \mid A \in G \}$
- note: det A = 1 means form gives 0 and so the rowspaces of elements of C represent lines of $W_3(q)$

q	G
2	GL ₁ (4)
3	Q_8
5	$2.A_{4}$
7	$2.S_{4}$
11	SL ₂ (5)

These maximal partial spreads of $W_3(q)$ were originally found by Pentilla.

Main result

Theorem (Crnković , H., Švob)

Let C be a NT code with minimum distance 4 in the generalised quadrangle $W_3(q)$. Then the following hold:

- 1. *C* is a regular spread $\iff \rho = 2$.
- 2. $|C| = q^2$ implies $\rho = 4$ and C is a spread minus a line.
- 3. $|C| = q^2 1$ implies q = 2, 3, 5, 7 or 11 and C is one of the codes from the previous slide, with $\rho = 3$.
- 4. |C| = q + 1 and $\rho = 3$ implies C is the set of points on a hyperbolic line.

5. If
$$q = 3$$
 and $|C| = 5$ then there is a unique code with $\rho = 3$.

Main result

Theorem (Crnković , H., Švob)

Let C be a NT code with minimum distance 4 in the generalised quadrangle $W_3(q)$. Then the following hold:

- 1. *C* is a regular spread $\Leftrightarrow \rho = 2$.
- 2. $|C| = q^2$ implies $\rho = 4$ and C is a spread minus a line.
- 3. $|C| = q^2 1$ implies q = 2, 3, 5, 7 or 11 and C is one of the codes from the previous slide, with $\rho = 3$.
- 4. |C| = q + 1 and $\rho = 3$ implies C is the set of points on a hyperbolic line.

5. If
$$q=3$$
 and $|C|=5$ then there is a unique code with $ho=3$.

Conjecture (Crnković , H., Švob)

Let C be a NT maximal partial ovoid or maximal partial spread of W $_{\mathbf{3}}(q)$. Then C is as in parts 1,3,4 or 5 above.

Thanks for listening!