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Codes in graphs

Delsarte and Biggs independently introduced the concept of a
code in a graph in 1973

• graph Γ with vertex set 𝑉Γ

• code 𝐶 in Γ is a subset of 𝑉Γ

• graph metric means definitions from classical coding theory
make sense

Graphs most commonly considered are the Johnson and Hamming
graphs
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Codes in graphs

Let 𝐶 be a code in a graph Γ

Important parameters:

• minimum distance of 𝐶 : 𝛿
smallest distance between distinct codewords

• covering radius of 𝐶 : 𝜌
largest distance between a vertex of Γ and its nearest
codeword



𝑠-Regular codes

A code 𝐶 in Γ gives rise to a partition {𝐶𝑖}𝜌𝑖=0 of 𝑉Γ , where 𝐶𝑖 is
the set of vertices distance 𝑖 to their nearest codeword.

𝐶 𝐶𝜌𝐶𝑠𝐶2𝐶1

𝑎1 𝑎𝑠𝑎2𝑎0
𝑏1 𝑏𝑠𝑏2𝑏0 𝑐1 𝑐𝑠𝑐2

⋯ ⋯

Definition (Delsarte 1973)
A code 𝐶 is 𝑠-regular if for all 𝑖 ≤ 𝑠 there exist integers 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖
(as above) depending only on 𝑖 giving the number of adjacent
vertices for each 𝛼 ∈ 𝐶𝑖 .
A code that is 𝜌-regular is called completely regular.
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Automorphisms Groups

Definition
The automorphism group Aut(𝐶) of a code 𝐶 in Γ is the
set-wise stabiliser of 𝐶 inside Aut(Γ ).
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E.g. Interchanging the inner and outer pairs of vertices is an
automorphism of 𝐻(3, 2) but not of 𝐶 , whilst a reflection on a
diagonal is an automorphism of both.
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𝑠-Neighbour-transitive codes

Definition
A code 𝐶 is 𝑠-neighbour-transitive (𝑠-NT) if Aut(𝐶) acts
transitively on 𝐶𝑖 for each 𝑖 ≤ 𝑠.
If 𝐶 is 𝜌-NT then 𝐶 is said to be completely transitive (CT).

𝐶 𝐶𝜌𝐶𝑠𝐶2𝐶1

𝐴𝑢𝑡(𝐶)-orb 𝐴𝑢𝑡(𝐶)-orb𝐴𝑢𝑡(𝐶)-orb𝐴𝑢𝑡(𝐶)-orb
⋯ ⋯

CT-ity originally introduced by Solé (1987) – above definition due
to Giudici and Praeger (2000).
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𝑠-Neighbour-transitive codes

Work has been done on:

• NT codes in Johnson graphs – Liebler and Praeger,
Neunhoffer and Praeger, Iopollo’s PhD thesis.

• CT codes in Hamming graphs – Giudici and Praeger, Gillespie’s
PhD thesis, Bailey and Hawtin.

• NT codes in Hamming graphs – Gillespie’s PhD thesis.

• 2-NT codes in Hamming graphs – H. thesis; Gillespie, Giudici,
H. and Praeger.



Generalised quadrangles

A generalised quadrangle (shortly a GQ) – introduced by Tits
(1959) – is an incidence structure 𝒬 = (𝒫 ,ℒ, I), where 𝒫 and
ℒ are sets called points and lines, respectively, and I is a
symmetric point-line incidence relation such that:

1. Each point is incident with 𝑡 + 1 lines (𝑡 ≥ 1) and two
distinct points are incident with at most one line.

2. Each line is incident with 𝑠 + 1 points (𝑠 ≥ 1) and two
distinct lines are incident with at most one point.

3. If 𝑝 is a point and 𝐿 is a line not incident with 𝑝, then there
is a unique pair (𝑞, 𝑀) ∈ 𝒫 × ℒ for which 𝑝 I 𝑀 I 𝑞 I 𝐿.

𝐿

𝑝
𝑀
𝑞

∃!



Classical GQs

Classical GQs are associated with certain classical groups and
isotropic points and lines of projective geometries under certain
bilinear/sesquilinear forms.

𝒬 order 𝒬𝐷 Aut(𝒬)
Q4(𝑞) (𝑞, 𝑞) W3(𝑞) PΓO5(𝑞)
Q−5(𝑞) (𝑞, 𝑞2) H3(𝑞2) PΓO−

6(𝑞)
W3(𝑞) (𝑞, 𝑞) Q4(𝑞) PΓSp4(𝑞)
H3(𝑞2) (𝑞2, 𝑞) Q−5(𝑞) PΓU4(𝑞)
H4(𝑞2) (𝑞2, 𝑞3) H4(𝑞2)𝐷 PΓU5(𝑞)

We will be interested mainly in W3(𝑞).
Note that there are various other constructions for GQs, but we
won’t consider these.



Point-line incidence graph of a GQ

The point-line incidence graph Γ of a GQ 𝒬 = (𝒫 ,ℒ, I) is
defined on the vertex set 𝑉Γ = 𝒫 ∪ ℒ with adjaceny given by I.

Properties of Γ :

• bipartite

• diameter 4
• girth 8

An code 𝐶 in Γ with 𝛿 = 4 is either a partial ovoid or a partial
spread, if 𝜌 = 2 then 𝐶 is either an ovoid or a spread, and if
𝜌 = 3 then 𝐶 is either a maximal partial ovoid or a maximal
partial spread.
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Ovoids and spreads

Theorem (Crnković , H., Švob)
Let 𝐶 be a NT code with 𝛿 = 4 and 𝜌 = 2 in a thick classical GQ
and assume that Aut(𝐶) is insoluble. Then 𝐶 is equivalent to
one of the following:

1. The regular spread of W3(𝑞).
2. A classical ovoid of H3(𝑞2).

Proof applies a theorem of Bamberg and Pentilla on transitive
𝑚-systems in polar spaces.



Examples in W3(𝑞)
• 𝑉 ≅ 𝔽4𝑞 equipped with the symplectic form
𝑓 (𝑥, 𝑦) = 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥3𝑦4 + 𝑥4𝑦3

• 𝐺 a sharply transitive subgroup of SL2(𝑞) (below)
• 𝐶 = {[𝐼 𝐴] ∣ 𝐴 ∈ 𝐺}
• note: det𝐴 = 1 means form gives 0 and so the rowspaces of
elements of 𝐶 represent lines of W3(𝑞)

𝑞 𝐺
2 GL1(4)
3 𝑄8
5 2.𝐴4
7 2.𝑆4
11 SL2(5)

These maximal partial spreads of W3(𝑞) were originally found by
Pentilla.



Main result

Theorem (Crnković , H., Švob)
Let 𝐶 be a NT code with minimum distance 4 in the generalised
quadrangle W3(𝑞). Then the following hold:

1. 𝐶 is a regular spread⇔𝜌 = 2.
2. |𝐶| = 𝑞2 implies 𝜌 = 4 and 𝐶 is a spread minus a line.

3. |𝐶| = 𝑞2 − 1 implies 𝑞 = 2, 3, 5, 7 or 11 and 𝐶 is one of the
codes from the previous slide, with 𝜌 = 3.

4. |𝐶| = 𝑞 + 1 and 𝜌 = 3 implies 𝐶 is the set of points on a
hyperbolic line.

5. If 𝑞 = 3 and |𝐶| = 5 then there is a unique code with 𝜌 = 3.

Conjecture (Crnković , H., Švob)
Let 𝐶 be a NT maximal partial ovoid or maximal partial spread
of W3(𝑞). Then 𝐶 is as in parts 1,3,4 or 5 above.



Main result

Theorem (Crnković , H., Švob)
Let 𝐶 be a NT code with minimum distance 4 in the generalised
quadrangle W3(𝑞). Then the following hold:

1. 𝐶 is a regular spread⇔𝜌 = 2.
2. |𝐶| = 𝑞2 implies 𝜌 = 4 and 𝐶 is a spread minus a line.

3. |𝐶| = 𝑞2 − 1 implies 𝑞 = 2, 3, 5, 7 or 11 and 𝐶 is one of the
codes from the previous slide, with 𝜌 = 3.

4. |𝐶| = 𝑞 + 1 and 𝜌 = 3 implies 𝐶 is the set of points on a
hyperbolic line.

5. If 𝑞 = 3 and |𝐶| = 5 then there is a unique code with 𝜌 = 3.
Conjecture (Crnković , H., Švob)
Let 𝐶 be a NT maximal partial ovoid or maximal partial spread
of W3(𝑞). Then 𝐶 is as in parts 1,3,4 or 5 above.



Thanks!

Thanks for listening!


