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A weighing matrix W (19, 9)

P =



0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 − 0 0 1 0 1 1 1 0 0 0 0 1 0 − 1 − 0
0 0 − 0 1 1 0 0 1 1 0 0 0 − 1 0 0 1 −
0 0 0 − 0 1 1 1 0 1 0 0 0 0 − 1 − 0 1
0 1 1 0 − 0 0 1 0 1 1 − 0 0 0 0 1 0 −
0 0 1 1 0 − 0 1 1 0 0 1 − 0 0 0 − 1 0
0 1 0 1 0 0 − 0 1 1 − 0 1 0 0 0 0 − 1
0 1 0 1 1 1 0 − 0 0 1 0 − 1 − 0 0 0 0
0 1 1 0 0 1 1 0 − 0 − 1 0 0 1 − 0 0 0
0 0 1 1 1 0 1 0 0 − 0 − 1 − 0 1 0 0 0
1 0 0 0 1 0 − 1 − 0 0 − − 0 1 0 0 0 1
1 0 0 0 − 1 0 0 1 − − 0 − 0 0 1 1 0 0
1 0 0 0 0 − 1 − 0 1 − − 0 1 0 0 0 1 0
1 1 − 0 0 0 0 1 0 − 0 0 1 0 − − 0 1 0
1 0 1 − 0 0 0 − 1 0 1 0 0 − 0 − 0 0 1
1 − 0 1 0 0 0 0 − 1 0 1 0 − − 0 1 0 0
1 1 0 − 1 − 0 0 0 0 0 1 0 0 0 1 0 − −
1 − 1 0 0 1 − 0 0 0 0 0 1 1 0 0 − 0 −
1 0 − 1 − 0 1 0 0 0 1 0 0 0 1 0 − − 0





A twin mate to W (19, 9)

Q =



0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 − − 0 1 0 0 0 1 − 1 1 0 1 0 0 0 1
0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1 1 0 0
0 − − 0 1 0 0 0 1 0 1 1 − 1 0 0 0 1 0
0 0 0 1 0 − − 0 1 0 0 0 1 − 1 1 0 1 0
0 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1
0 0 1 0 − − 0 1 0 0 0 1 0 1 1 − 1 0 0
0 0 1 0 0 0 1 0 − − 0 1 0 0 0 1 − 1 1
0 0 0 1 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1
0 1 0 0 0 1 0 − − 0 1 0 0 0 1 0 1 1 −
1 0 0 0 1 0 − 1 − 0 0 − − 0 1 0 0 0 1
1 0 0 0 − 1 0 0 1 − − 0 − 0 0 1 1 0 0
1 0 0 0 0 − 1 − 0 1 − − 0 1 0 0 0 1 0
1 1 − 0 0 0 0 1 0 − 0 0 1 0 − − 0 1 0
1 0 1 − 0 0 0 − 1 0 1 0 0 − 0 − 0 0 1
1 − 0 1 0 0 0 0 − 1 0 1 0 − − 0 1 0 0
1 1 0 − 1 − 0 0 0 0 0 1 0 0 0 1 0 − −
1 − 1 0 0 1 − 0 0 0 0 0 1 1 0 0 − 0 −
1 0 − 1 − 0 1 0 0 0 1 0 0 0 1 0 − − 0





Weighing matrices

• A weighing matrix W of weight k and order n, denoted
W (n, k), is an n × n (-1,0,1)-matrix such that WW t = kI .

• A W (n, n) is called a Hadamard matrix.

• A W(n, n − 1) is called a conference matrix.

• For n ≡ 0 mod 4
Conjecture: There is a W (n, k) for every 1 ≤ k ≤ n.

• For W (n, k): If n ≡ 2 mod 4, then k = a2 + b2, for some
integer a and b.

• If n is odd, then k is a perfect square.
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Case of prime power weight

Consider a weighing matrix of order n and weight the prime power p. By
applying signed permutations, if necessary, the matrix can be written in

W =

[
j D

0 R

]
.

j is the column vector of p ones and 0 is the column vector of n − p zeros.

Lemma
For the prime power p and the positive integer m there is

an array O in p symbols of order

pm+1 × (
pm+1 − 1

p − 1
)

in such a way that every two different rows have exactly

pm − 1

p − 1

symbols in the same column.
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The use of D and R part

W =

[
j D
0 R

]
By using the p rows of D as the symbols in the array O a matrix D of

order pm+1 × ( pm+1−1
p−1 )(n − 1) is obtained.

It follows that the matrix DDt (of order pm+1 ) has pm+1 on the
diagonal and −1 off diagonal.

Let W be a W ( pm+1−1
p−1 , pm). Let R =W ⊗ R.

It follows that RRt of order ( pm+1−1
p−1 )(n− p) has 0 off diagonal and pm+1

on the diagonal.
The matrix [

j D
0 R

]
is a weighing matrix of order ( pm+1−1

p−1 )(n − 1) + 1 and weight pm+1.

Example
Starting with a W (8, 5) (a seed weighing matrix) , n = 8, p = 5 and
m = 1, a W (43, 25) is constructed.
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W (43, 25) in details

Here is a weighing matrix W (8, 5):

H′ =



1 1 1 1 1 0 0 0
1 1 − − 0 1 0 0
1 − 1 − 0 0 1 0
1 − − 1 0 0 0 1
1 0 0 0 − − − −
0 1 0 0 − − 1 1
0 0 1 0 − 1 − 1
0 0 0 1 − 1 1 −


.

Then

D =


1 1 1 1 0 0 0
1 − − 0 1 0 0
− 1 − 0 0 1 0
− − 1 0 0 0 1
0 0 0 − − − −

 ,
for which DDt = 5I − J.
and

R =

1 0 0 − − 1 1
0 1 0 − 1 − 1
0 0 1 − 1 1 −

 ,
for which RRt = 5I .
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The Orthogonal design O



1 1 1 1 1 1
1 2 2 2 2 2
1 3 3 3 3 3
1 4 4 4 4 4
1 5 5 5 5 5
2 1 2 3 4 5
2 2 3 4 5 1
2 3 4 5 1 2
2 4 5 1 2 3
2 5 1 2 3 4
3 1 3 5 2 4
3 3 5 2 4 1
3 5 2 4 1 3
3 2 4 1 3 5
3 4 1 3 5 2
4 1 4 2 5 3
4 4 2 5 3 1
4 2 5 3 1 4
4 5 3 1 4 2
4 3 1 4 2 5
5 1 5 4 3 2
5 5 4 3 2 1
5 4 3 2 1 5
5 3 2 1 5 4
5 2 1 5 4 3





Constructing W(43, 25)

Replacing the five numbers in the array O with the five rows of R
(in any order) a matrix D is obtained for which DDt = 25− J.
If W is any W(6, 5), then

R = W ⊗ R =


0 1 1 1 1 1
1 0 1 − − 1
1 1 0 1 − −
1 − 1 0 1 −
1 − − 1 0 1
1 1 − − 1 0

⊗ R =



0 R R R R R
R 0 R R̄ R̄ R
R R 0 R R̄ R̄
R R̄ R 0 R R̄
R R̄ R̄ R 0 R
R R R̄ R̄ R 0


and RRt = 25I . Moreover, DRt = 0. Consequently, the matrix

X =

[
j D
0 R

]
forms a W(43, 25).
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Balanced weighing matrices, case of n = p + 1

• It is natural to ask if a weighing matrix exhibits any further structure.

• An important question is whether or not by squaring the entries of a weighing
matrix the incidence matrix of a symmetric BIBD is obtained.

Definition
Let W = [wij ] be a W(v , k), and let A = |W | = [|wij |].If A is the incidence matrix of a
symmetric BIBD(v , k, λ), then W is called to be balanced and is shown as
BW (v , k, λ).

The only known class of balanced weighing matrices is the following:

Theorem
For each odd prime power p and positive integer m there is a balanced weighing
matrix (with classical parameters)

BW

(
pm+1 − 1

p − 1
, pm, pm−1(p − 1)

)
.

There is also a sporadic case of BW (19, 9, 4) known.
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Proof: the Case of n = p + 1

Let p be an odd prime power. Let W be a seed weighing matrix of
order p + 1 with weight p. Let

W =

[
0 (j)t

j D

]
By using the p rows of D as the symbols of the orthogonal array O

a matrix D of order pm+1 × (p
m+1−1
p−1 p) is obtained.

It follows that the matrix DDt (of order pm+1) has pm+1 − 1 on
the diagonal and −1 off diagonal.

Let R = W ⊗ (j)t . Then R is a pm+2−1
p−1 × (p

m+1−1
p−1 p) matrix and

RRt has pm+1 on the diagonal and 0 off-diagonal. The matrix[
0 R
j D

]

is the desired matrix.
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The sporadic case of BW (19, 9, 4)

Here it is: 

1 0 0 0 1 0 − 1 − 0 0 − − 0 1 0 0 0 1
1 0 0 0 − 1 0 0 1 − − 0 − 0 0 1 1 0 0
1 0 0 0 0 − 1 − 0 1 − − 0 1 0 0 0 1 0
1 1 − 0 0 0 0 1 0 − 0 0 1 0 − − 0 1 0
1 0 1 − 0 0 0 − 1 0 1 0 0 − 0 − 0 0 1
1 − 0 1 0 0 0 0 − 1 0 1 0 − − 0 1 0 0
1 1 0 − 1 − 0 0 0 0 0 1 0 0 0 1 0 − −
1 − 1 0 0 1 − 0 0 0 0 0 1 1 0 0 − 0 −
1 0 − 1 − 0 1 0 0 0 1 0 0 0 1 0 − − 0
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 − − 0 1 0 0 0 1 − 1 1 0 1 0 0 0 1
0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1 1 0 0
0 − − 0 1 0 0 0 1 0 1 1 − 1 0 0 0 1 0
0 0 0 1 0 − − 0 1 0 0 0 1 − 1 1 0 1 0
0 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1
0 0 1 0 − − 0 1 0 0 0 1 0 1 1 − 1 0 0
0 0 1 0 0 0 1 0 − − 0 1 0 0 0 1 − 1 1
0 0 0 1 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1
0 1 0 0 0 1 0 − − 0 1 0 0 0 1 0 1 1 −
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Blowing BW (19, 9, 4) to an infinite class

There is a

BW

(
1 + 18 · 9m+1 − 1

8
, 9m+1, 4 · 9m

)
for every nonnegative integer m.

In order to construct the infinite class we need to show

• a method to construct an infinite number of symmetric
designs from a single seed symmetric design.

• a method to sign the symmetric design.
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Quasi-residual designs

Lemma
Let (p + 1, 2p, p, p+1

2 , p−12 ) be parameters of a quasi-residual
BIBD, say D1.

Let W be a weighing matrix W (p + 1, p). Then
there is a quasi-residual

BIBD((p + 1)2, 2p(p + 1), p2, p(
p + 1

2
), p(

p − 1

2
)).

Proof: Let D2 be the mate residual design to D1, then
D1 + D2 = J(p+1)×2p. Split the weighing matrix W into positive
and negative part W = W+ −W−. Then

D = W+ ⊗ D1 + W− ⊗ D2

is a quasi-residual

BIBD((p + 1)2, 2p(p + 1), p2, p(
p + 1

2
), p(

p − 1

2
)).
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An example

Example

A BIBD(16, 30, 15, 8, 7) is obtained from the residual design of a
SBIBD(31, 15, 7). There is also a weighing matrix W (16, 15).
Therefore, there is a quasi-residual BIBD(256, 480, 225, 120, 105).

Theorem

For prime powers p the quasi-residual design

R = BIBD
(

(p + 1)2, 2p(p + 1), p2, p(p+1
2 ), p(p−12 )

)
,

obtained from the residual design of P = SBIBD(2p + 1, p, p−12 ) is
embeddable and a symmetric design
SBIBD(p2 + (p + 1)2, p2, p(p − 1)/2) is obtained.
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A quick summary and more designs in general

Let p be an odd prime power. Consider the seed
P = SBIBD(2p + 1, p, p−12 ). Write

P =

[
jp D

0p+1 R

]
By applying a

BW

(
pm+1 − 1

p − 1
, pm, pm−1(p − 1)

)
there is a

SBIBD

(
2p(

pm+1 − 1

p − 1
) + 1, pm+1,

pm(p − 1)

2

)
.
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The signing of SBIBD(19, 9, 4)

Applying the method to the prime power 9 it follows that there is a
symmetric design

SBIBD

(
1 + 18 · 9m+1 − 1

8
, 9m+1, 4 · 9m

)
.

The signing of the design will be shown in the next few slides.
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The Residual part: BIBD(10, 18, 9, 5, 4)

P =



0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
− 0 0 1 0 1 1 1 0 0 0 0 1 0 − 1 − 0
0 − 0 1 1 0 0 1 1 0 0 0 − 1 0 0 1 −
0 0 − 0 1 1 1 0 1 0 0 0 0 − 1 − 0 1
1 1 0 − 0 0 1 0 1 1 − 0 0 0 0 1 0 −
0 1 1 0 − 0 1 1 0 0 1 − 0 0 0 − 1 0
1 0 1 0 0 − 0 1 1 − 0 1 0 0 0 0 − 1
1 0 1 1 1 0 − 0 0 1 0 − 1 − 0 0 0 0
1 1 0 0 1 1 0 − 0 − 1 0 0 1 − 0 0 0
0 1 1 1 0 1 0 0 − 0 − 1 − 0 1 0 0 0


• PPt = 9I10.

• |P| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



The Residual part: BIBD(10, 18, 9, 5, 4)

P =



0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
− 0 0 1 0 1 1 1 0 0 0 0 1 0 − 1 − 0
0 − 0 1 1 0 0 1 1 0 0 0 − 1 0 0 1 −
0 0 − 0 1 1 1 0 1 0 0 0 0 − 1 − 0 1
1 1 0 − 0 0 1 0 1 1 − 0 0 0 0 1 0 −
0 1 1 0 − 0 1 1 0 0 1 − 0 0 0 − 1 0
1 0 1 0 0 − 0 1 1 − 0 1 0 0 0 0 − 1
1 0 1 1 1 0 − 0 0 1 0 − 1 − 0 0 0 0
1 1 0 0 1 1 0 − 0 − 1 0 0 1 − 0 0 0
0 1 1 1 0 1 0 0 − 0 − 1 − 0 1 0 0 0



• PPt = 9I10.

• |P| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



The Residual part: BIBD(10, 18, 9, 5, 4)

P =



0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
− 0 0 1 0 1 1 1 0 0 0 0 1 0 − 1 − 0
0 − 0 1 1 0 0 1 1 0 0 0 − 1 0 0 1 −
0 0 − 0 1 1 1 0 1 0 0 0 0 − 1 − 0 1
1 1 0 − 0 0 1 0 1 1 − 0 0 0 0 1 0 −
0 1 1 0 − 0 1 1 0 0 1 − 0 0 0 − 1 0
1 0 1 0 0 − 0 1 1 − 0 1 0 0 0 0 − 1
1 0 1 1 1 0 − 0 0 1 0 − 1 − 0 0 0 0
1 1 0 0 1 1 0 − 0 − 1 0 0 1 − 0 0 0
0 1 1 1 0 1 0 0 − 0 − 1 − 0 1 0 0 0


• PPt = 9I10.

• |P| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



The Residual part: BIBD(10, 18, 9, 5, 4)

P =



0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
− 0 0 1 0 1 1 1 0 0 0 0 1 0 − 1 − 0
0 − 0 1 1 0 0 1 1 0 0 0 − 1 0 0 1 −
0 0 − 0 1 1 1 0 1 0 0 0 0 − 1 − 0 1
1 1 0 − 0 0 1 0 1 1 − 0 0 0 0 1 0 −
0 1 1 0 − 0 1 1 0 0 1 − 0 0 0 − 1 0
1 0 1 0 0 − 0 1 1 − 0 1 0 0 0 0 − 1
1 0 1 1 1 0 − 0 0 1 0 − 1 − 0 0 0 0
1 1 0 0 1 1 0 − 0 − 1 0 0 1 − 0 0 0
0 1 1 1 0 1 0 0 − 0 − 1 − 0 1 0 0 0


• PPt = 9I10.

• |P| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



The Residual part: BIBD(10, 18, 9, 5, 4)

P =



0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
− 0 0 1 0 1 1 1 0 0 0 0 1 0 − 1 − 0
0 − 0 1 1 0 0 1 1 0 0 0 − 1 0 0 1 −
0 0 − 0 1 1 1 0 1 0 0 0 0 − 1 − 0 1
1 1 0 − 0 0 1 0 1 1 − 0 0 0 0 1 0 −
0 1 1 0 − 0 1 1 0 0 1 − 0 0 0 − 1 0
1 0 1 0 0 − 0 1 1 − 0 1 0 0 0 0 − 1
1 0 1 1 1 0 − 0 0 1 0 − 1 − 0 0 0 0
1 1 0 0 1 1 0 − 0 − 1 0 0 1 − 0 0 0
0 1 1 1 0 1 0 0 − 0 − 1 − 0 1 0 0 0


• PPt = 9I10.

• |P| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



A complementary mate for P

Q =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 −− 0 1 0 0 0 1 − 1 1 0 1 0 0 0 1
− 0 − 0 0 1 1 0 0 1 − 1 0 0 1 1 0 0
−− 0 1 0 0 0 1 0 1 1 − 1 0 0 0 1 0
0 0 1 0 −− 0 1 0 0 0 1 − 1 1 0 1 0
1 0 0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1
0 1 0 −− 0 1 0 0 0 1 0 1 1 − 1 0 0
0 1 0 0 0 1 0 −− 0 1 0 0 0 1 − 1 1
0 0 1 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1
1 0 0 0 1 0 −− 0 1 0 0 0 1 0 1 1 −


• QQt = 9I10.

• |Q| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



A complementary mate for P

Q =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 −− 0 1 0 0 0 1 − 1 1 0 1 0 0 0 1
− 0 − 0 0 1 1 0 0 1 − 1 0 0 1 1 0 0
−− 0 1 0 0 0 1 0 1 1 − 1 0 0 0 1 0
0 0 1 0 −− 0 1 0 0 0 1 − 1 1 0 1 0
1 0 0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1
0 1 0 −− 0 1 0 0 0 1 0 1 1 − 1 0 0
0 1 0 0 0 1 0 −− 0 1 0 0 0 1 − 1 1
0 0 1 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1
1 0 0 0 1 0 −− 0 1 0 0 0 1 0 1 1 −



• QQt = 9I10.

• |Q| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



A complementary mate for P

Q =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 −− 0 1 0 0 0 1 − 1 1 0 1 0 0 0 1
− 0 − 0 0 1 1 0 0 1 − 1 0 0 1 1 0 0
−− 0 1 0 0 0 1 0 1 1 − 1 0 0 0 1 0
0 0 1 0 −− 0 1 0 0 0 1 − 1 1 0 1 0
1 0 0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1
0 1 0 −− 0 1 0 0 0 1 0 1 1 − 1 0 0
0 1 0 0 0 1 0 −− 0 1 0 0 0 1 − 1 1
0 0 1 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1
1 0 0 0 1 0 −− 0 1 0 0 0 1 0 1 1 −


• QQt = 9I10.

• |Q| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



A complementary mate for P

Q =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 −− 0 1 0 0 0 1 − 1 1 0 1 0 0 0 1
− 0 − 0 0 1 1 0 0 1 − 1 0 0 1 1 0 0
−− 0 1 0 0 0 1 0 1 1 − 1 0 0 0 1 0
0 0 1 0 −− 0 1 0 0 0 1 − 1 1 0 1 0
1 0 0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1
0 1 0 −− 0 1 0 0 0 1 0 1 1 − 1 0 0
0 1 0 0 0 1 0 −− 0 1 0 0 0 1 − 1 1
0 0 1 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1
1 0 0 0 1 0 −− 0 1 0 0 0 1 0 1 1 −


• QQt = 9I10.

• |Q| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



A complementary mate for P

Q =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 −− 0 1 0 0 0 1 − 1 1 0 1 0 0 0 1
− 0 − 0 0 1 1 0 0 1 − 1 0 0 1 1 0 0
−− 0 1 0 0 0 1 0 1 1 − 1 0 0 0 1 0
0 0 1 0 −− 0 1 0 0 0 1 − 1 1 0 1 0
1 0 0 − 0 − 0 0 1 1 0 0 1 − 1 0 0 1
0 1 0 −− 0 1 0 0 0 1 0 1 1 − 1 0 0
0 1 0 0 0 1 0 −− 0 1 0 0 0 1 − 1 1
0 0 1 1 0 0 − 0 − 0 0 1 1 0 0 1 − 1
1 0 0 0 1 0 −− 0 1 0 0 0 1 0 1 1 −


• QQt = 9I10.

• |Q| is the incidence matrix of a BIBD(10, 18, 9, 5, 4).



A Derived part for both P and Q

There is a signed D = BIBD(9, 18, 8, 4, 3) that when added to
either P or Q it turns them into a BW (19, 9, 4).

D =



0 0 0 1 0− 1− 0 0−− 0 1 0 0 0 1
0 0 0− 1 0 0 1−− 0− 0 0 1 1 0 0
0 0 0 0− 1− 0 1−− 0 1 0 0 0 1 0
1− 0 0 0 0 1 0− 0 0 1 0−− 0 1 0
0 1− 0 0 0− 1 0 1 0 0− 0− 0 0 1
− 0 1 0 0 0 0− 1 0 1 0−− 0 1 0 0
1 0− 1− 0 0 0 0 0 1 0 0 0 1 0−−
− 1 0 0 1− 0 0 0 0 0 1 1 0 0− 0−
0− 1− 0 1 0 0 0 1 0 0 0 1 0−− 0
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Quaternary balanced generalized weighing matrices



0 1 1 1 1 1 1 1 1 1
1 0 i − j 1 i − j 1
1 i 0 j − j i 1 1 −
1− j 0 1 j 1 − i i
1 j − 1 0 i 1 i j −
1 1 j j i 0 − i − 1
1 i i 1 1 − 0 j − j
1− 1 − i i j 0 1 j
1 j 1 i j −− 1 0 i
1 1 − i − 1 j j i 0


= W0 + iW1 + (−1)W2 + (−i)W3
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Quaternary balanced generalized weighing matrices

Let W be a BGW(9
m+1−1

8 , 9m, 9m − 9m−1) over Z4 generated by
the complex unit i . There are 4 disjoint (0,1)-matrices {Wi}3i=0

satisfying

W =
3∑

j=0

(i)jWj .

Define the 109m+1−1
8 × 189m+1−1

8 matrix R as

R = W0 ⊗ P + W1 ⊗ (−Q) + W2 ⊗ (−P) + W3 ⊗ Q.

Then,

• RRt = 9m+1I 10(9m+1−1)
8

.
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The outcome

Lemma

1. RR> = 9m+1I 10(9m+1−1)
8

.

2. DD> = 9m+1I9m+1 − J9m+1 .

3. RD> = DR> = 0.
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The design is signed

The matrix [
jpm+1 D

0
18 9m+1−1

8

R

]
is the desired balanced weighing matrix and:

Theorem
There is a balanced weighing matrix with parameters

BW

(
1 + 18 · 9m+1 − 1

8
, 9m+1, 4 · 9m

)
for each nonzero integer m.
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Two open questions

1. A necessary and sufficient condition for the existence of a
weighing matrix

W (n, k) =



0 1 · · · 1 0 · · · 0

1
...
1
0
...
0

0 ∗
. . .

. . .

∗ 0



2. Is there a balanced BW (2q2 + 1, q2, q
2−1
2 ) for every prime

power q?

The first open case is the existence of a BW (51, 25, 12).
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