Constructing some combinatorial matrices by using orthogonal arrays Combinatorial Designs and Codes Satellite event of the 8th European Congress of Mathematics

Hadi Kharaghani

University of Lethbridge Department of Mathematics and Computer Science

Joint work with Thomas Pender and Sho Suda

July 13, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A weighing matrix W(19,9)

Ρ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A twin mate to W(19,9)

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼ のへの

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• A weighing matrix W of weight k and order n, denoted W(n, k), is an $n \times n$ (-1,0,1)-matrix such that $WW^t = kI$.

(日) (四) (日) (日) (日)

• A weighing matrix W of weight k and order n, denoted W(n, k), is an $n \times n$ (-1,0,1)-matrix such that $WW^t = kI$.

(日) (四) (日) (日) (日)

- A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.
- A W(n, n) is called a Hadamard matrix.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.
- A W(n, n) is called a Hadamard matrix.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A W(n, n) is called a Hadamard matrix.
- A W(n, n − 1) is called a conference matrix.

A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A W(n, n) is called a Hadamard matrix.
- A W(n, n − 1) is called a conference matrix.

- A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.
- A W(n, n) is called a Hadamard matrix.
- A W(n, n-1) is called a *conference matrix*.
- For $n \equiv 0 \mod 4$ Conjecture: There is a W(n, k) for every $1 \le k \le n$.

- A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.
- A W(n, n) is called a Hadamard matrix.
- A W(n, n-1) is called a *conference matrix*.
- For $n \equiv 0 \mod 4$ Conjecture: There is a W(n, k) for every $1 \le k \le n$.

- A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.
- A W(n, n) is called a Hadamard matrix.
- A W(n, n-1) is called a conference matrix.
- For $n \equiv 0 \mod 4$ Conjecture: There is a W(n, k) for every $1 \le k \le n$.
- For W(n, k): If n ≡ 2 mod 4, then k = a² + b², for some integer a and b.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.
- A W(n, n) is called a Hadamard matrix.
- A W(n, n-1) is called a conference matrix.
- For $n \equiv 0 \mod 4$ Conjecture: There is a W(n, k) for every $1 \le k \le n$.
- For W(n, k): If n ≡ 2 mod 4, then k = a² + b², for some integer a and b.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If *n* is odd, then *k* is a perfect square.

- A weighing matrix W of weight k and order n, denoted W(n, k), is an n × n (-1,0,1)-matrix such that WW^t = kI.
- A W(n, n) is called a Hadamard matrix.
- A W(n, n-1) is called a conference matrix.
- For $n \equiv 0 \mod 4$ Conjecture: There is a W(n, k) for every $1 \le k \le n$.
- For W(n, k): If n ≡ 2 mod 4, then k = a² + b², for some integer a and b.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If *n* is odd, then *k* is a perfect square.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Consider a weighing matrix of order n and weight the prime power p.

Consider a weighing matrix of order n and weight the prime power p. By applying signed permutations, if necessary, the matrix can be written in

$$W = \begin{bmatrix} j & D \\ 0 & R \end{bmatrix}.$$

(日) (四) (日) (日) (日)

Consider a weighing matrix of order n and weight the prime power p. By applying signed permutations, if necessary, the matrix can be written in

$$W = \begin{bmatrix} j & D \\ 0 & R \end{bmatrix}.$$

j is the column vector of p ones and 0 is the column vector of n - p zeros.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider a weighing matrix of order n and weight the prime power p. By applying signed permutations, if necessary, the matrix can be written in

$$W = \begin{bmatrix} j & D \\ 0 & R \end{bmatrix}.$$

j is the column vector of p ones and 0 is the column vector of n - p zeros.

Lemma

For the prime power p and the positive integer m there is

an array O in

Consider a weighing matrix of order n and weight the prime power p. By applying signed permutations, if necessary, the matrix can be written in

$$W = \begin{bmatrix} j & D \\ 0 & R \end{bmatrix}.$$

j is the column vector of p ones and 0 is the column vector of n - p zeros.

Lemma

For the prime power p and the positive integer m there is

an array O in p symbols of order

$$p^{m+1} imes(rac{p^{m+1}-1}{p-1})$$

Consider a weighing matrix of order n and weight the prime power p. By applying signed permutations, if necessary, the matrix can be written in

$$W = \begin{bmatrix} j & D \\ 0 & R \end{bmatrix}.$$

j is the column vector of p ones and 0 is the column vector of n - p zeros.

Lemma

For the prime power p and the positive integer m there is

an array O in p symbols of order

$$p^{m+1} imes(rac{p^{m+1}-1}{p-1})$$

in such a way that every two different rows have exactly

$$rac{p^m-1}{p-1}$$

symbols in the same column.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

By using the *p* rows of *D* as the symbols in the array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1})(n-1)$ is obtained.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

By using the *p* rows of *D* as the symbols in the array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1})(n-1)$ is obtained. It follows that the matrix \mathcal{DD}^t (of order p^{m+1}) has p^{m+1} on the diagonal and -1 off diagonal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

By using the p rows of D as the symbols in the array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1})(n-1)$ is obtained. It follows that the matrix \mathcal{DD}^t (of order p^{m+1}) has p^{m+1} on the

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

diagonal and -1 off diagonal.

Let
$$\mathcal W$$
 be a $W(rac{p^{m+1}-1}{p-1},p^m)$. Let $\mathcal R=\mathcal W\otimes \mathcal R.$

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

By using the *p* rows of *D* as the symbols in the array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1})(n-1)$ is obtained.

It follows that the matrix DD^t (of order p^{m+1}) has p^{m+1} on the diagonal and -1 off diagonal.

Let \mathcal{W} be a $W(\frac{p^{m+1}-1}{p-1}, p^m)$. Let $\mathcal{R} = \mathcal{W} \otimes R$. It follows that \mathcal{RR}^t of order $(\frac{p^{m+1}-1}{p-1})(n-p)$ has 0 off diagonal and p^{m+1} on the diagonal.

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

By using the *p* rows of *D* as the symbols in the array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1})(n-1)$ is obtained.

It follows that the matrix \mathcal{DD}^t (of order p^{m+1}) has p^{m+1} on the diagonal and -1 off diagonal.

Let \mathcal{W} be a $W(\frac{p^{m+1}-1}{p-1}, p^m)$. Let $\mathcal{R} = \mathcal{W} \otimes R$. It follows that \mathcal{RR}^t of order $(\frac{p^{m+1}-1}{p-1})(n-p)$ has 0 off diagonal and p^{m+1} on the diagonal. The matrix

$$\begin{bmatrix} j & \mathcal{D} \\ 0 & \mathcal{R} \end{bmatrix}$$

is a weighing matrix of order $(\frac{p^{m+1}-1}{p-1})(n-1)+1$ and weight p^{m+1} .

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

By using the *p* rows of *D* as the symbols in the array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1})(n-1)$ is obtained.

It follows that the matrix DD^t (of order p^{m+1}) has p^{m+1} on the diagonal and -1 off diagonal.

Let \mathcal{W} be a $W(\frac{p^{m+1}-1}{p-1}, p^m)$. Let $\mathcal{R} = \mathcal{W} \otimes R$. It follows that \mathcal{RR}^t of order $(\frac{p^{m+1}-1}{p-1})(n-p)$ has 0 off diagonal and p^{m+1} on the diagonal. The matrix

$$\begin{bmatrix} j & \mathcal{D} \\ 0 & \mathcal{R} \end{bmatrix}$$

is a weighing matrix of order $(\frac{p^{m+1}-1}{p-1})(n-1)+1$ and weight p^{m+1} .

Example

Starting with a W(8,5) (a seed weighing matrix), n = 8, p = 5 and m = 1, a W(43,25) is constructed.

$$W = \left[\begin{array}{c|c} j & D \\ \hline 0 & R \end{array} \right]$$

By using the *p* rows of *D* as the symbols in the array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1})(n-1)$ is obtained.

It follows that the matrix DD^t (of order p^{m+1}) has p^{m+1} on the diagonal and -1 off diagonal.

Let \mathcal{W} be a $W(\frac{p^{m+1}-1}{p-1}, p^m)$. Let $\mathcal{R} = \mathcal{W} \otimes R$. It follows that \mathcal{RR}^t of order $(\frac{p^{m+1}-1}{p-1})(n-p)$ has 0 off diagonal and p^{m+1} on the diagonal. The matrix

$$\begin{bmatrix} j & \mathcal{D} \\ 0 & \mathcal{R} \end{bmatrix}$$

is a weighing matrix of order $(\frac{p^{m+1}-1}{p-1})(n-1)+1$ and weight p^{m+1} .

Example

Starting with a W(8,5) (a seed weighing matrix), n = 8, p = 5 and m = 1, a W(43,25) is constructed.

Here is a weighing matrix W(8,5):

$$H' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & - & - & 0 & 1 & 0 & 0 \\ 1 & - & 1 & - & 0 & 0 & 1 & 0 \\ 1 & - & - & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & - & - & - & - \\ 0 & 1 & 0 & 0 & - & - & - & 1 & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 0 & 1 & - & 1 & 1 & - \end{bmatrix}.$$

Here is a weighing matrix W(8,5):

$$H' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & - & - & 0 & 1 & 0 & 0 \\ 1 & - & 1 & - & 0 & 0 & 1 & 0 \\ 1 & - & - & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & - & - & - & - \\ \hline 0 & 1 & 0 & 0 & - & - & - & 1 & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & - & 1 & 1 & - \\ \end{bmatrix},$$
$$D = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & - & - & 0 & 1 & 0 & 0 \\ 1 & - & - & 0 & 1 & 0 & 0 \\ - & 1 & - & 0 & 0 & 1 & 0 \\ - & - & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & - & - & - & - \end{bmatrix},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Then

Here is a weighing matrix W(8,5):

$$H' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & - & - & 0 & 1 & 0 & 0 \\ 1 & - & 1 & - & 0 & 0 & 1 & 0 \\ 1 & - & - & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & - & - & - & - \\ \hline 0 & 1 & 0 & 0 & - & - & - & 1 & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 0 & 1 & - & 1 & 1 & - \\ \end{bmatrix},$$
$$D = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & - & - & 0 & 1 & 0 & 0 \\ 1 & - & - & 0 & 1 & 0 & 0 \\ - & 1 & - & 0 & 0 & 1 & 0 \\ - & - & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & - & - & - & - \end{bmatrix},$$

for which $DD^t = 5I - J$.

Then

Here is a weighing matrix W(8,5):

$$H' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & - & - & 0 & 1 & 0 & 0 \\ 1 & - & 1 & - & 0 & 0 & 1 & 0 \\ 1 & - & - & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & - & - & - & - \\ \hline 0 & 1 & 0 & 0 & - & - & - & 1 & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & - & 1 & 0 & 0 \\ \hline 1 & - & - & 0 & 1 & 0 & 0 \\ - & 1 & - & 0 & 0 & 1 & 0 \\ - & - & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & - & - & - & - \end{bmatrix},$$

$$DD^{t} = 5I - J.$$

$$R = \begin{bmatrix} 1 & 0 & 0 & - & - & 1 & 1 \\ 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & - & 1 & 1 & - \end{bmatrix},$$

for which $RR^t = 5I$.

Then

for which and
W(43, 25) in details

Here is a weighing matrix W(8,5):

$$H' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & - & - & 0 & 1 & 0 & 0 \\ 1 & - & 1 & - & 0 & 0 & 1 & 0 \\ 1 & - & - & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & - & - & - & - \\ \hline 0 & 1 & 0 & 0 & - & - & - & 1 & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & - & 1 & 0 & 0 \\ \hline 1 & - & - & 0 & 1 & 0 & 0 \\ - & 1 & - & 0 & 0 & 1 & 0 \\ - & - & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & - & - & - & - \end{bmatrix},$$

$$DD^{t} = 5I - J.$$

$$R = \begin{bmatrix} 1 & 0 & 0 & - & - & 1 & 1 \\ 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 1 & 0 & - & 1 & - & 1 \\ 0 & 0 & 1 & - & 1 & 1 & - \end{bmatrix},$$

for which $RR^t = 5I$.

Then

for which and

The Orthogonal design O

Γ1	1	1	1	1	1 -
1	2	2	2	2	2
1	3	3	3	3	3
1	4	4	4	4	4
1	5	5	5	5	5
2	1	2	3	4	5
2	2	3	4	5	1
2	3	4	5	1	2
2	4	5	1	2	3
2	5	1	2	3	4
3	1	3	5	2	4
3	3	5	2	4	1
3	5	2	4	1	3
3	2	4	1	3	5
3	4	1	3	5	2
4	1	4	2	5	3
4	4	2	5	3	1
4	2	5	3	1	4
4	5	3	1	4	2
4	3	1	4	2	5
5	1	5	4	3	2
5	5	4	3	2	1
5	4	3	2	1	5
5	3	2	1	5	4
L5	2	1	5	4	3_

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Replacing the five numbers in the array O with the five rows of R (in any order) a matrix D is obtained for which $DD^t = 25 - J$.

人口 医水黄 医水黄 医水黄素 化甘油

Replacing the five numbers in the array O with the five rows of R (in any order) a matrix D is obtained for which $DD^t = 25 - J$. If W is any W(6, 5), then

$$\mathcal{R} = W \otimes R = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & - & - & 1 \\ 1 & 1 & 0 & 1 & - & - \\ 1 & - & 1 & 0 & 1 & - \\ 1 & - & - & 1 & 0 & 1 \\ 1 & 1 & - & - & 1 & 0 \end{bmatrix} \otimes R = \begin{bmatrix} 0 & R & R & R & R & R \\ R & 0 & R & \bar{R} & \bar{R} & R \\ R & R & 0 & R & \bar{R} \\ R & \bar{R} & \bar{R} & 0 & R \\ R & \bar{R} & \bar{R} & \bar{R} & 0 & R \\ R & R & \bar{R} & \bar{R} & \bar{R} & 0 \end{bmatrix}$$

and $\mathcal{RR}^t = 25I$. Moreover, $\mathcal{DR}^t = 0$.

Replacing the five numbers in the array O with the five rows of R (in any order) a matrix D is obtained for which $DD^t = 25 - J$. If W is any W(6, 5), then

$$\mathcal{R} = W \otimes R = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & - & - & 1 \\ 1 & 1 & 0 & 1 & - & - \\ 1 & - & 1 & 0 & 1 & - \\ 1 & - & - & 1 & 0 & 1 \\ 1 & 1 & - & - & 1 & 0 \end{bmatrix} \otimes R = \begin{bmatrix} 0 & R & R & R & R & R \\ R & 0 & R & \bar{R} & \bar{R} & R \\ R & R & 0 & R & \bar{R} \\ R & \bar{R} & \bar{R} & 0 & R \\ R & \bar{R} & \bar{R} & \bar{R} & 0 & R \\ R & R & \bar{R} & \bar{R} & \bar{R} & 0 \end{bmatrix}$$

and $\mathcal{RR}^t = 25I$. Moreover, $\mathcal{DR}^t = 0$. Consequently, the matrix

$$X = \begin{bmatrix} j & \mathcal{D} \\ \hline 0 & \mathcal{R} \end{bmatrix}$$

forms a W(43, 25).

Replacing the five numbers in the array O with the five rows of R (in any order) a matrix D is obtained for which $DD^t = 25 - J$. If W is any W(6, 5), then

$$\mathcal{R} = W \otimes R = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & - & - & 1 \\ 1 & 1 & 0 & 1 & - & - \\ 1 & - & 1 & 0 & 1 & - \\ 1 & - & - & 1 & 0 & 1 \\ 1 & 1 & - & - & 1 & 0 \end{bmatrix} \otimes R = \begin{bmatrix} 0 & R & R & R & R & R \\ R & 0 & R & \bar{R} & \bar{R} & R \\ R & R & 0 & R & \bar{R} \\ R & \bar{R} & \bar{R} & 0 & R \\ R & \bar{R} & \bar{R} & \bar{R} & 0 & R \\ R & R & \bar{R} & \bar{R} & \bar{R} & 0 \end{bmatrix}$$

and $\mathcal{RR}^t = 25I$. Moreover, $\mathcal{DR}^t = 0$. Consequently, the matrix

$$X = \begin{bmatrix} j & \mathcal{D} \\ \hline 0 & \mathcal{R} \end{bmatrix}$$

forms a W(43, 25).

• It is natural to ask if a weighing matrix exhibits any further structure.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• It is natural to ask if a weighing matrix exhibits any further structure.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

(日) (四) (日) (日) (日)

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

(日) (四) (日) (日) (日)

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

Definition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

▲□▶ ▲冊▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

```
Definition
Let W = [w_{ij}] be a W(v, k), and let A = |W| = [|w_{ij}|].
```

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

Definition

Let $W = [w_{ij}]$ be a W(v, k), and let $A = |W| = [|w_{ij}|]$. If A is the incidence matrix of a symmetric $BIBD(v, k, \lambda)$, then W is called to be *balanced* and is shown as $BW(v, k, \lambda)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

Definition

Let $W = [w_{ij}]$ be a W(v, k), and let $A = |W| = [|w_{ij}|]$. If A is the incidence matrix of a symmetric $BIBD(v, k, \lambda)$, then W is called to be *balanced* and is shown as $BW(v, k, \lambda)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

Definition

Let $W = [w_{ij}]$ be a W(v, k), and let $A = |W| = [|w_{ij}|]$. If A is the incidence matrix of a symmetric $BIBD(v, k, \lambda)$, then W is called to be *balanced* and is shown as $BW(v, k, \lambda)$.

The only known class of balanced weighing matrices is the following:

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

Definition

Let $W = [w_{ij}]$ be a W(v, k), and let $A = |W| = [|w_{ij}|]$. If A is the incidence matrix of a symmetric $BIBD(v, k, \lambda)$, then W is called to be *balanced* and is shown as $BW(v, k, \lambda)$.

The only known class of balanced weighing matrices is the following:

Theorem

For each odd prime power p and positive integer m there is a balanced weighing matrix (with classical parameters)

$$BW\left(\frac{p^{m+1}-1}{p-1},p^m,p^{m-1}(p-1)\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There is also a *sporadic* case of BW(19, 9, 4) known.

- It is natural to ask if a weighing matrix exhibits any further structure.
- An important question is whether or not by squaring the entries of a weighing matrix the incidence matrix of a symmetric BIBD is obtained.

Definition

Let $W = [w_{ij}]$ be a W(v, k), and let $A = |W| = [|w_{ij}|]$. If A is the incidence matrix of a symmetric $BIBD(v, k, \lambda)$, then W is called to be *balanced* and is shown as $BW(v, k, \lambda)$.

The only known class of balanced weighing matrices is the following:

Theorem

For each odd prime power p and positive integer m there is a balanced weighing matrix (with classical parameters)

$$BW\left(\frac{p^{m+1}-1}{p-1},p^m,p^{m-1}(p-1)\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There is also a *sporadic* case of BW(19, 9, 4) known.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let p be an odd prime power. Let W be a seed weighing matrix of order p + 1 with weight p.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Let p be an odd prime power. Let W be a seed weighing matrix of order p + 1 with weight p. Let

$$W = \left[\begin{array}{c|c} 0 & (j)^t \\ \hline j & D \end{array} \right]$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Let p be an odd prime power. Let W be a seed weighing matrix of order p + 1 with weight p. Let

$$W = \left[\begin{array}{c|c} 0 & (j)^t \\ \hline j & D \end{array} \right]$$

By using the *p* rows of *D* as the symbols of the orthogonal array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1}p)$ is obtained.

Let p be an odd prime power. Let W be a seed weighing matrix of order p + 1 with weight p. Let

$$W = \left[\begin{array}{c|c} 0 & (j)^t \\ \hline j & D \end{array} \right]$$

By using the *p* rows of *D* as the symbols of the orthogonal array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1}p)$ is obtained. It follows that the matrix \mathcal{DD}^t (of order p^{m+1}) has $p^{m+1} - 1$ on the diagonal and -1 off diagonal.

Let p be an odd prime power. Let W be a seed weighing matrix of order p + 1 with weight p. Let

$$W = \left[\begin{array}{c|c} 0 & (j)^t \\ \hline j & D \end{array} \right]$$

By using the *p* rows of *D* as the symbols of the orthogonal array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1}p)$ is obtained. It follows that the matrix \mathcal{DD}^t (of order p^{m+1}) has $p^{m+1} - 1$ on the diagonal and -1 off diagonal. Let $\mathcal{R} = W \otimes (j)^t$. Then \mathcal{R} is a $\frac{p^{m+2}-1}{p-1} \times (\frac{p^{m+1}-1}{p-1}p)$ matrix and \mathcal{RR}^t has p^{m+1} on the diagonal and 0 off-diagonal. The matrix

Let p be an odd prime power. Let W be a seed weighing matrix of order p + 1 with weight p. Let

$$W = \left[\begin{array}{c|c} 0 & (j)^t \\ \hline j & D \end{array} \right]$$

By using the *p* rows of *D* as the symbols of the orthogonal array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1}p)$ is obtained. It follows that the matrix \mathcal{DD}^t (of order p^{m+1}) has $p^{m+1} - 1$ on the diagonal and -1 off diagonal. Let $\mathcal{R} = W \otimes (j)^t$. Then \mathcal{R} is a $\frac{p^{m+2}-1}{p-1} \times (\frac{p^{m+1}-1}{p-1}p)$ matrix and \mathcal{RR}^t has p^{m+1} on the diagonal and 0 off-diagonal. The matrix

$$\begin{bmatrix} 0 & \mathcal{R} \\ \hline j & \mathcal{D} \end{bmatrix}$$

(日)((1))

is the desired matrix.

Let p be an odd prime power. Let W be a seed weighing matrix of order p + 1 with weight p. Let

$$W = \left[\begin{array}{c|c} 0 & (j)^t \\ \hline j & D \end{array} \right]$$

By using the *p* rows of *D* as the symbols of the orthogonal array O a matrix \mathcal{D} of order $p^{m+1} \times (\frac{p^{m+1}-1}{p-1}p)$ is obtained. It follows that the matrix \mathcal{DD}^t (of order p^{m+1}) has $p^{m+1} - 1$ on the diagonal and -1 off diagonal. Let $\mathcal{R} = W \otimes (j)^t$. Then \mathcal{R} is a $\frac{p^{m+2}-1}{p-1} \times (\frac{p^{m+1}-1}{p-1}p)$ matrix and \mathcal{RR}^t has p^{m+1} on the diagonal and 0 off-diagonal. The matrix

$$\begin{bmatrix} 0 & \mathcal{R} \\ \hline j & \mathcal{D} \end{bmatrix}$$

(日)((1))

is the desired matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Here it is:

Here it is:

Ì	1	0	0	0	1	0	_	1	_	0	0	_	_	0	1	0	0	0	1-
	1	0	0	0	_	1	0	0	1	_	_	0	_	0	0	1	1	0	0
	1	0	0	0	0	_	1	_	0	1	_	_	0	1	0	0	0	1	0
	1	1	_	0	0	0	0	1	0	_	0	0	1	0	_	_	0	1	0
	1	0	1	_	0	0	0	_	1	0	1	0	0	_	0	_	0	0	1
	1	-	0	1	0	0	0	0	—	1	0	1	0	—	—	0	1	0	0
	1	1	0	_	1	_	0	0	0	0	0	1	0	0	0	1	0	_	-
	1	-	1	0	0	1	-	0	0	0	0	0	1	1	0	0	_	0	-
	1	0	—	1	-	0	1	0	0	0	1	0	0	0	1	0	_	_	0
	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	0	0	—	_	0	1	0	0	0	1	-	1	1	0	1	0	0	0	1
	0	-	0	_	0	0	1	1	0	0	1	-	1	0	0	1	1	0	0
	0	-	_	0	1	0	0	0	1	0	1	1	_	1	0	0	0	1	0
	0	0	0	1	0	_	_	0	1	0	0	0	1	—	1	1	0	1	0
	0	1	0	0	_	0	_	0	0	1	1	0	0	1	—	1	0	0	1
ļ	0	0	1	0	_	_	0	1	0	0	0	1	0	1	1	-	1	0	0
	0	0	1	0	0	0	1	0	—	—	0	1	0	0	0	1	_	1	1
	0	0	0	1	1	0	0	_	0	—	0	0	1	1	0	0	1	_	1
ļ	0	1	0	0	0	1	0	_	—	0	1	0	0	0	1	0	1	1	

BW(19,9,4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Here it is:

Ì	1	0	0	0	1	0	_	1	_	0	0	_	_	0	1	0	0	0	1-
	1	0	0	0	_	1	0	0	1	_	_	0	_	0	0	1	1	0	0
	1	0	0	0	0	_	1	_	0	1	_	_	0	1	0	0	0	1	0
	1	1	_	0	0	0	0	1	0	_	0	0	1	0	_	_	0	1	0
	1	0	1	_	0	0	0	_	1	0	1	0	0	_	0	_	0	0	1
	1	-	0	1	0	0	0	0	—	1	0	1	0	—	—	0	1	0	0
	1	1	0	_	1	_	0	0	0	0	0	1	0	0	0	1	0	_	-
	1	-	1	0	0	1	-	0	0	0	0	0	1	1	0	0	_	0	-
	1	0	—	1	-	0	1	0	0	0	1	0	0	0	1	0	_	_	0
	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	0	0	—	_	0	1	0	0	0	1	-	1	1	0	1	0	0	0	1
	0	-	0	_	0	0	1	1	0	0	1	-	1	0	0	1	1	0	0
	0	-	_	0	1	0	0	0	1	0	1	1	_	1	0	0	0	1	0
	0	0	0	1	0	_	_	0	1	0	0	0	1	—	1	1	0	1	0
	0	1	0	0	_	0	_	0	0	1	1	0	0	1	—	1	0	0	1
ļ	0	0	1	0	_	_	0	1	0	0	0	1	0	1	1	-	1	0	0
	0	0	1	0	0	0	1	0	—	—	0	1	0	0	0	1	_	1	1
	0	0	0	1	1	0	0	_	0	—	0	0	1	1	0	0	1	_	1
ļ	0	1	0	0	0	1	0	_	—	0	1	0	0	0	1	0	1	1	

BW(19,9,4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Blowing BW(19, 9, 4) to an infinite class

Blowing BW(19, 9, 4) to an infinite class

There is a

$$BW\left(1+18\cdot\frac{9^{m+1}-1}{8},9^{m+1},4\cdot9^{m}\right)$$

(ロ)、(型)、(E)、(E)、 E) の(()

Blowing BW(19, 9, 4) to an infinite class

There is a

$$BW\left(1+18\cdot rac{9^{m+1}-1}{8},9^{m+1},4\cdot 9^{m}
ight)$$

for every nonnegative integer m.

In order to construct the infinite class we need to show

• a method to construct an infinite number of symmetric designs from a single seed symmetric design.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• a method to *sign* the symmetric design.

Quasi-residual designs

Lemma

Let $(p + 1, 2p, p, \frac{p+1}{2}, \frac{p-1}{2})$ be parameters of a quasi-residual BIBD, say D_1 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
Quasi-residual designs

Lemma

Let $(p + 1, 2p, p, \frac{p+1}{2}, \frac{p-1}{2})$ be parameters of a quasi-residual BIBD, say D_1 . Let W be a weighing matrix W(p + 1, p). Then there is a quasi-residual

$$BIBD((p+1)^2, 2p(p+1), p^2, p(\frac{p+1}{2}), p(\frac{p-1}{2})).$$

A D N A 目 N A E N A E N A B N A C N

Proof: Let D_2 be the *mate* residual design to D_1 , then $D_1 + D_2 = J_{(p+1) \times 2p}$.

Quasi-residual designs

Lemma

Let $(p + 1, 2p, p, \frac{p+1}{2}, \frac{p-1}{2})$ be parameters of a quasi-residual BIBD, say D_1 . Let W be a weighing matrix W(p + 1, p). Then there is a quasi-residual

$$BIBD((p+1)^2, 2p(p+1), p^2, p(\frac{p+1}{2}), p(\frac{p-1}{2})).$$

Proof: Let D_2 be the *mate* residual design to D_1 , then $D_1 + D_2 = J_{(p+1)\times 2p}$. Split the weighing matrix W into positive and negative part $W = W^+ - W^-$. Then

$$\mathcal{D} = W^+ \otimes D_1 + W^- \otimes D_2$$

Quasi-residual designs

Lemma

Let $(p + 1, 2p, p, \frac{p+1}{2}, \frac{p-1}{2})$ be parameters of a quasi-residual BIBD, say D_1 . Let W be a weighing matrix W(p + 1, p). Then there is a quasi-residual

$$BIBD((p+1)^2, 2p(p+1), p^2, p(\frac{p+1}{2}), p(\frac{p-1}{2})).$$

Proof: Let D_2 be the *mate* residual design to D_1 , then $D_1 + D_2 = J_{(p+1)\times 2p}$. Split the weighing matrix W into positive and negative part $W = W^+ - W^-$. Then

$$\mathcal{D} = W^+ \otimes D_1 + W^- \otimes D_2$$

is a quasi-residual

$$\mathsf{BIBD}((p+1)^2, 2p(p+1), p^2, p(\frac{p+1}{2}), p(\frac{p-1}{2})).$$

Example

A BIBD(16, 30, 15, 8, 7) is obtained from the residual design of a SBIBD(31, 15, 7). There is also a weighing matrix W(16, 15). Therefore, there is a quasi-residual BIBD(256, 480, 225, 120, 105).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

A BIBD(16, 30, 15, 8, 7) is obtained from the residual design of a SBIBD(31, 15, 7). There is also a weighing matrix W(16, 15). Therefore, there is a quasi-residual BIBD(256, 480, 225, 120, 105).

Theorem

For prime powers p the quasi-residual design $\mathcal{R} = BIBD\left((p+1)^2, 2p(p+1), p^2, p(\frac{p+1}{2}), p(\frac{p-1}{2})\right),$ obtained from the residual design of $P = SBIBD(2p+1, p, \frac{p-1}{2})$ is embeddable

A D N A 目 N A E N A E N A B N A C N

Example

A BIBD(16, 30, 15, 8, 7) is obtained from the residual design of a SBIBD(31, 15, 7). There is also a weighing matrix W(16, 15). Therefore, there is a quasi-residual BIBD(256, 480, 225, 120, 105).

Theorem

For prime powers p the quasi-residual design $\mathcal{R} = BIBD\left((p+1)^2, 2p(p+1), p^2, p(\frac{p+1}{2}), p(\frac{p-1}{2})\right),$ obtained from the residual design of $P = SBIBD(2p+1, p, \frac{p-1}{2})$ is embeddable and a symmetric design $SBIBD(p^2 + (p+1)^2, p^2, p(p-1)/2)$ is obtained.

Example

A BIBD(16, 30, 15, 8, 7) is obtained from the residual design of a SBIBD(31, 15, 7). There is also a weighing matrix W(16, 15). Therefore, there is a quasi-residual BIBD(256, 480, 225, 120, 105).

Theorem

For prime powers p the quasi-residual design $\mathcal{R} = BIBD\left((p+1)^2, 2p(p+1), p^2, p(\frac{p+1}{2}), p(\frac{p-1}{2})\right),$ obtained from the residual design of $P = SBIBD(2p+1, p, \frac{p-1}{2})$ is embeddable and a symmetric design $SBIBD(p^2 + (p+1)^2, p^2, p(p-1)/2)$ is obtained.

Let *p* be an odd prime power. Consider the seed $P = SBIBD(2p + 1, p, \frac{p-1}{2})$. Write

$$P = \left[\begin{array}{c|c} \mathbf{j}_p & \mathcal{D} \\ \hline \mathbf{0}_{p+1} & \mathcal{R} \end{array} \right]$$

Let p be an odd prime power. Consider the seed $P = SBIBD(2p + 1, p, \frac{p-1}{2})$. Write

$$P = \left[\begin{array}{c|c} \mathbf{j}_{p} & \mathcal{D} \\ \hline \mathbf{0}_{p+1} & \mathcal{R} \end{array} \right]$$

By applying a

$$BW\left(\frac{p^{m+1}-1}{p-1},p^m,p^{m-1}(p-1)\right)$$

there is a

$$SBIBD\left(2p(\frac{p^{m+1}-1}{p-1})+1,p^{m+1},\frac{p^m(p-1)}{2}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let p be an odd prime power. Consider the seed $P = SBIBD(2p + 1, p, \frac{p-1}{2})$. Write

$$P = \left[\begin{array}{c|c} \mathbf{j}_{p} & \mathcal{D} \\ \hline \mathbf{0}_{p+1} & \mathcal{R} \end{array} \right]$$

By applying a

$$BW\left(\frac{p^{m+1}-1}{p-1},p^m,p^{m-1}(p-1)\right)$$

there is a

$$SBIBD\left(2p(\frac{p^{m+1}-1}{p-1})+1,p^{m+1},\frac{p^m(p-1)}{2}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Applying the method to the prime power 9

(日) (四) (日) (日) (日)

Applying the method to the prime power 9 it follows that there is a symmetric design

$$SBIBD\left(1+18\cdot\frac{9^{m+1}-1}{8},9^{m+1},4\cdot9^{m}
ight)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Applying the method to the prime power 9 it follows that there is a symmetric design

$$SBIBD\left(1+18\cdot\frac{9^{m+1}-1}{8},9^{m+1},4\cdot9^{m}
ight).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The signing of the design will be shown in the next few slides.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• $PP^t = 9I_{10}$.

• $PP^t = 9I_{10}$.

• |P| is the incidence matrix of a *BIBD*(10, 18, 9, 5, 4).

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

• $PP^t = 9I_{10}$.

• |P| is the incidence matrix of a *BIBD*(10, 18, 9, 5, 4).

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• $QQ^t = 9I_{10}$.

• $QQ^t = 9I_{10}$.

• |Q| is the incidence matrix of a *BIBD*(10, 18, 9, 5, 4).

• $QQ^t = 9I_{10}$.

• |Q| is the incidence matrix of a *BIBD*(10, 18, 9, 5, 4).

There is a signed D = BIBD(9, 18, 8, 4, 3) that when added to either *P* or *Q* it turns them into a BW(19, 9, 4).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

There is a signed D = BIBD(9, 18, 8, 4, 3) that when added to either P or Q it turns them into a BW(19, 9, 4).

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & -1 & -0 & 0 & -- & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 & -- & 0 & -0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -0 & 1 & -- & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & -0 & 0 & 0 & 0 & 1 & 0 & -- & 0 & 0 & 1 \\ -0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & -- & 0 & 1 & 0 \\ 1 & 0 & -1 & -0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & -- \\ -1 & 0 & 0 & 1 & -0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & -- & 0 \end{bmatrix}$$

There is a signed D = BIBD(9, 18, 8, 4, 3) that when added to either P or Q it turns them into a BW(19, 9, 4).

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & -1 & -0 & 0 & -- & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 & -- & 0 & -0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -0 & 1 & -- & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & -0 & 0 & 0 & 0 & 1 & 0 & -- & 0 & 0 & 1 \\ -0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & -- & 0 & 1 & 0 \\ 1 & 0 & -1 & -0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & -- \\ -1 & 0 & 0 & 1 & -0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & -- & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Let W be a BGW $(\frac{9^{m+1}-1}{8}, 9^m, 9^m - 9^{m-1})$ over \mathbb{Z}_4 generated by the complex unit *i*. There are 4 disjoint (0,1)-matrices $\{W_i\}_{i=0}^3$ satisfying

$$W = \sum_{j=0}^{3} (i)^j W_j.$$

Let W be a BGW $(\frac{9^{m+1}-1}{8}, 9^m, 9^m - 9^{m-1})$ over \mathbb{Z}_4 generated by the complex unit *i*. There are 4 disjoint (0,1)-matrices $\{W_i\}_{i=0}^3$ satisfying

$$W = \sum_{j=0}^{3} (i)^{j} W_{j}.$$

Define the $10rac{9^{m+1}-1}{8} imes 18rac{9^{m+1}-1}{8}$ matrix ${\cal R}$ as

 $\mathcal{R} = W_0 \otimes P + W_1 \otimes (-Q) + W_2 \otimes (-P) + W_3 \otimes Q.$
Quaternary balanced generalized weighing matrices

Let W be a BGW $(\frac{9^{m+1}-1}{8}, 9^m, 9^m - 9^{m-1})$ over \mathbb{Z}_4 generated by the complex unit *i*. There are 4 disjoint (0,1)-matrices $\{W_i\}_{i=0}^3$ satisfying

$$W = \sum_{j=0}^{3} (i)^{j} W_{j}.$$

Define the $10rac{9^{m+1}-1}{8} imes 18rac{9^{m+1}-1}{8}$ matrix ${\cal R}$ as

$$\mathcal{R} = W_0 \otimes P + W_1 \otimes (-Q) + W_2 \otimes (-P) + W_3 \otimes Q.$$

Then,

•
$$\mathcal{RR}^t = 9^{m+1} I_{\frac{10(9^{m+1}-1)}{8}}.$$

Quaternary balanced generalized weighing matrices

Let W be a BGW $(\frac{9^{m+1}-1}{8}, 9^m, 9^m - 9^{m-1})$ over \mathbb{Z}_4 generated by the complex unit *i*. There are 4 disjoint (0,1)-matrices $\{W_i\}_{i=0}^3$ satisfying

$$W = \sum_{j=0}^{3} (i)^{j} W_{j}.$$

Define the $10rac{9^{m+1}-1}{8} imes 18rac{9^{m+1}-1}{8}$ matrix ${\cal R}$ as

$$\mathcal{R} = W_0 \otimes P + W_1 \otimes (-Q) + W_2 \otimes (-P) + W_3 \otimes Q.$$

Then,

•
$$\mathcal{RR}^t = 9^{m+1} I_{\frac{10(9^{m+1}-1)}{8}}.$$

Quaternary balanced generalized weighing matrices

Let W be a BGW $(\frac{9^{m+1}-1}{8}, 9^m, 9^m - 9^{m-1})$ over \mathbb{Z}_4 generated by the complex unit *i*. There are 4 disjoint (0,1)-matrices $\{W_i\}_{i=0}^3$ satisfying

$$W = \sum_{j=0}^{3} (i)^{j} W_{j}.$$

Define the $10rac{9^{m+1}-1}{8} imes 18rac{9^{m+1}-1}{8}$ matrix ${\cal R}$ as

$$\mathcal{R} = W_0 \otimes P + W_1 \otimes (-Q) + W_2 \otimes (-P) + W_3 \otimes Q.$$

Then,

•
$$\mathcal{RR}^t = 9^{m+1} I_{\frac{10(9^{m+1}-1)}{8}}.$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Lemma
1.
$$RR^{\top} = 9^{m+1} I_{\frac{10(9^{m+1}-1)}{8}}$$
.
2. $DD^{\top} = 9^{m+1} I_{9^{m+1}} - J_{9^{m+1}}$.
3. $RD^{\top} = DR^{\top} = 0$.

Lemma
1.
$$RR^{\top} = 9^{m+1} I_{\frac{10(9^{m+1}-1)}{8}}$$
.
2. $DD^{\top} = 9^{m+1} I_{9^{m+1}} - J_{9^{m+1}}$.
3. $RD^{\top} = DR^{\top} = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

The matrix

$$\begin{bmatrix} \mathbf{j}_{\boldsymbol{\rho}^{m+1}} & \mathcal{D} \\ \hline \mathbf{0}_{18\frac{\mathbf{9}^{m+1}-1}{8}} & \mathcal{R} \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

æ

The matrix

$$\begin{bmatrix} \mathbf{j}_{p^{m+1}} & \mathcal{D} \\ \mathbf{0}_{18\frac{9^{m+1}-1}{8}} & \mathcal{R} \end{bmatrix}$$

<ロ> <四> <四> <四> <三</td>

is the desired balanced weighing matrix and:

The matrix

$$\begin{bmatrix} \mathbf{j}_{\boldsymbol{\rho}^{m+1}} & \mathcal{D} \\ \mathbf{0}_{18\frac{\mathbf{9}^{m+1}-1}{8}} & \mathcal{R} \end{bmatrix}$$

is the desired balanced weighing matrix and:

Theorem

There is a balanced weighing matrix with parameters

$$BW\left(1+18\cdot\frac{9^{m+1}-1}{8},9^{m+1},4\cdot9^{m}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for each nonzero integer m.

The matrix

$$\begin{bmatrix} \mathbf{j}_{\boldsymbol{\rho}^{m+1}} & \mathcal{D} \\ \mathbf{0}_{18\frac{\mathbf{9}^{m+1}-1}{8}} & \mathcal{R} \end{bmatrix}$$

is the desired balanced weighing matrix and:

Theorem

There is a balanced weighing matrix with parameters

$$BW\left(1+18\cdot\frac{9^{m+1}-1}{8},9^{m+1},4\cdot9^{m}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for each nonzero integer m.

Two open questions

1. A necessary and sufficient condition for the existence of a weighing matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two open questions

1. A necessary and sufficient condition for the existence of a weighing matrix

$$W(n,k) = \begin{bmatrix} 0 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ \vdots & & & & & & & \\ 0 & & & & & & & \\ \vdots & & & & & & & 0 \end{bmatrix}$$

2. Is there a balanced $BW(2q^2 + 1, q^2, \frac{q^2-1}{2})$ for every prime power q?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Two open questions

1. A necessary and sufficient condition for the existence of a weighing matrix

$$W(n,k) = \begin{bmatrix} 0 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ \vdots & & & & & & & \\ 0 & & & & & & & \\ \vdots & & & & & & & 0 \end{bmatrix}$$

2. Is there a balanced $BW(2q^2 + 1, q^2, \frac{q^2-1}{2})$ for every prime power q?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The first open case is the existence of a BW(51, 25, 12).