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Case of prime power weight

Consider a weighing matrix of order n and weight the prime power p. By
applying signed permutations, if necessary, the matrix can be written in

w13

j is the column vector of p ones and 0 is the column vector of n — p zeros.

Lemma
For the prime power p and the positive integer m there is

an array O in p symbols of order
m+1 P -
>< S —
(p_l)
in such a way that every two different rows have exactly

p" -1
p—1

symbols in the same column.
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Here is a weighing matrix W(8,5):

171 1 1 0 0 O
1j1 - - 0 1 0 O
1/- 1 - 0 0 1 O
1/- - 1 0 0 0 1
10 0 0 - — — -—
oj1r o o - - 1 1
ojo 1 0o - 1 — 1
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Here is a weighing matrix W(8,5):

OHOO ||| A
—ooo ||| | |
— | | TOo|l0O0
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Here is a weighing matrix W(8,5):

Then

for which DDt =5/ — J.

o
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1{- - 1 0 0 0 1
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1 o o0 1 0],
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The Orthogonal design O

1111117
122222
133333
144444
155555
212345
223451
234512
245123
251234
313524
335241
352413
324135
341352
414253
442531
425314
453142
431425
515432
554321
543215
532154

[521543]
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Blowing BW/(19,9,4) to an infinite class

There is a

9m+1 _

1
BW (1+18-8,9’"+1,4-9’">

for every nonnegative integer m.

In order to construct the infinite class we need to show

® a method to construct an infinite number of symmetric
designs from a single seed symmetric design.

® a method to sign the symmetric design.
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Quasi-residual designs

Lemma

Let (p+1,2p,p, pTH, ‘%1) be parameters of a quasi-residual
BIBD, say Dy. Let W be a weighing matrix W(p + 1, p). Then
there is a quasi-residual

p+1 p—1
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A BIBD(16,30,15,8,7) is obtained from the residual design of a
SBIBD(31,15,7). There is also a weighing matrix W/(16, 15).
Therefore, there is a quasi-residual BIBD(256, 480,225,120, 105).



An example

Example

A BIBD(16,30,15,8,7) is obtained from the residual design of a
SBIBD(31,15,7). There is also a weighing matrix W/(16, 15).
Therefore, there is a quasi-residual BIBD(256, 480,225,120, 105).

Theorem

For prime powers p the quasi-residual design
R = BIBD ((p+1)2,2p(p + 1), 2, p(Z52), p(25) ).

obtained from the residual design of P = SBIBD(2p + 1, p, &5 1)
embeddable



An example

Example

A BIBD(16,30,15,8,7) is obtained from the residual design of a
SBIBD(31,15,7). There is also a weighing matrix W/(16, 15).
Therefore, there is a quasi-residual BIBD(256, 480,225,120, 105).

Theorem
For prime powers p the quasi-residual design
R = BIBD ((p+1)2,2p(p + 1), 2, p(Z52), p(25) ).

obtained from the residual design of P = SBIBD(2p + 1, p, &5 1) is
embeddable and a symmetric design
SBIBD(p? + (p + 1), p2, p(p — 1)/2) is obtained.



An example

Example

A BIBD(16,30,15,8,7) is obtained from the residual design of a
SBIBD(31,15,7). There is also a weighing matrix W/(16, 15).
Therefore, there is a quasi-residual BIBD(256, 480,225,120, 105).

Theorem
For prime powers p the quasi-residual design
R = BIBD ((p+1)2,2p(p + 1), 2, p(Z52), p(25) ).

obtained from the residual design of P = SBIBD(2p + 1, p, &5 1) is
embeddable and a symmetric design
SBIBD(p? + (p + 1), p2, p(p — 1)/2) is obtained.



A quick summary and more designs in general



A quick summary and more designs in general

Let p be an odd prime power. Consider the seed
P = SBIBD(2p + 1, p, 251). Write

b |D
P=
[ Opt1 | R ]



A quick summary and more designs in general

Let p be an odd prime power. Consider the seed
P = SBIBD(2p + 1, p, 251). Write

p |D
P=

[ Opt1 | R ]
By applying a

m+1 1 m -1
SBIBD <2p(pl) + 1,pm+1’ p(p)) )
p_



A quick summary and more designs in general

Let p be an odd prime power. Consider the seed
P = SBIBD(2p + 1, p, 251). Write

p |D
P=

[ Opt1 | R ]
By applying a

m+1 1 m -1
SBIBD <2p(pl) + 1,pm+1’ p(p)) )
p_



The signing of SBIBD(19,9, 4)



The signing of SBIBD(19,9, 4)

Applying the method to the prime power 9



The signing of SBIBD(19,9, 4)

Applying the method to the prime power 9 it follows that there is a
symmetric design

m+1_1
—,9m 4. 9m> :

SBIBD (1 + 18- 5



The signing of SBIBD(19,9, 4)

Applying the method to the prime power 9 it follows that there is a
symmetric design

m+1_1
—,9m 4. 9m> :

SBIBD <1 + 18- 5

The signing of the design will be shown in the next few slides.
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Two open questions

1. A necessary and sufficient condition for the existence of a
weighing matrix

01 10 0
1
0 *
W(n k)y=11
0
o | 0

2. Is there a balanced BW(2¢° + 1, ¢°, %) for every prime
power q?
The first open case is the existence of a BW/(51,25,12).



