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Background

Given a graph G , the line graph L(G) is the graph which has the

edges of G as vertices, and two vertices are adjacent if and only if

they are adjacent as edges in G .

Our work is inspired by the following ideas:

(Ruskey and Savage, 1993) Does every matching in the
n-dimensional hypercube Qn, for n ≥ 2, extend to a
hamiltonian cycle of Qn?

TRUE for n = 2, 3, 4 (Fink, 2007) and for n = 5 (Wang and
Zhao, 2018).

(Fink, 2007) Perfect matchings extend to hamiltonian cycles
in Qn.
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Pairing-Hamiltonian-Property (or the PH-property)

Definition

Let G be a graph having an even number of vertices. Let KG be
the complete graph on V (G ). A pairing of G is a perfect matching
of KG .

Definition

G has the PH-property: if for every pairing P of G , there exists
M ⊂ E (G ), such that P ∪M is a hamiltonian cycle in KG .

Theorem (Fink, 2007)

Qn has the PH-property.
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Results on the PH-property

Theorem (Thomassen et al., 2015)

Let G be a cubic graph with the PH-property. Then G is either:

the complete graph K4, or

the complete bipartite graph K3,3, or

the 3-cube.
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The PH-property in K3,3, in which the red edges are a pairing of
K3,3:
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The PMH-Property

Definition

(PMH-Property) If every perfect matching of a graph G can be
extended to a hamiltonian cycle, then we say that G has the
Perfect-Matching- Hamiltonian Property, (PMH-Property).

Since every perfect matching of G is a pairing of G :

PH-Property ⇒ PMH-property
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PMH-Property in Literature

In literature, graphs having the PMH-Property are known as
F-Hamiltonian graphs. Some known results:

Theorem (Las Vergnas, 1972)

Let G be a bipartite graph, with partite sets V1 and V2, such that
|V1| = |V2| = m ≥ 2. If for each pair of non-adjacent vertices
u1 ∈ V1 and u2 ∈ V2 we have:

deg(u1) + deg(u2) ≥ m + 1,

then G has the PMH-property.



PMH-Property in Literature

Theorem (Haggkvist, 1979)

Let G be a graph, such that |V (G )| is even and at least 4. If for
each pair of non-adjacent vertices u and v we have:

deg(u) + deg(v) ≥ |V (G )|+ 1,

then G has the PMH-property.



PMH-Property in Literature

Theorem (Z.Yang, 1999)

Let G be a graph on n ≥ 4 vertices, n ≡ 0 mod 2,
minv∈V (G){deg(v)} ≥ 2, and

|E (G )| ≥ (n − 1)(n − 2)

2
+ 1.

Then, G has the PMH-property if and only if G is not the
following graph:
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PMH-Property in Literature

Theorem (Z.Yang, 1999)

Let G be a bipartite graph, with partite sets V1 and V2, such that
|V1| = |V2| = n ≥ 2, minv∈V (G){deg(v)} ≥ 2, and

|E (G )| ≥ n2 − n + 1.

Then, G has the PMH-property if and only if G is not the
following graph:



Line graphs of graphs with small maximum degree

Which are the graphs whose line graph admits the
PMH-property?
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Line graphs of graphs with small maximum degree

A necessary condition for line graph to be PMH is that it
admits a perfect matching hence we assume
|E (G )| = |V (L(G ))| is even.

Another trivial condition is that L(G ) is hamiltonian.

(Harary, Nash–Williams, 1965): L(G ) is hamiltonian if and
only if G admits a dominating tour.

Recall that a dominating tour is a tour in which every edge of
G is incident with at least one vertex of the tour.

This implies that if G is hamiltonian or eulerian, then, L(G ) is
also hamiltonian.
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Line graphs of graphs with small maximum degree

Theorem (Abreu, Gauci, DL, Mazzuoccolo, Zerafa, El.J.
Combin. 2021)

Let G be a hamiltonian graph such that ∆(G ) ≤ 3, then L(G ) is
PMH.

In particular Theorem applies for all hamiltonian cubic graphs.

In the cubic case we can say more:

(Kotzig, 1964): the existence of a hamiltonian cycle in a cubic
graph is both a necessary and sufficient condition for a
partition of L(G ) into two hamiltonian cycles.
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Line graphs of graphs with small maximum degree

Corollary (Abreu, Gauci, DL, Mazzuoccolo, Zerafa,
El.J.Combin. 2021)

G be a hamiltonian cubic graph and M a perfect matching of
L(G ). Then, L(G ) can be partitioned into two hamiltonian cycles,
one of which contains M.

Could the conditions on maximum degree and hamiltonicity of
G in the Theorem be improved?
Our result is best possible in terms of maximum degree of G :
indeed, if G is a hamiltonian graph such that ∆(G ) = 4, then,
L(G ) is not necessarily PMH (cf. Figure)
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Line graphs of graphs with small maximum degree

On the other hand, hamiltonicity of G in Theorem is not a
necessary condition, since there exist non-hamiltonian cubic
graphs whose line graph is PMH.

Hypohamiltonian cubic graphs are examples of such graphs.

Recall that a graph G is hypohamiltonian if G is not
hamiltonian, but for every v ∈ V (G ), G − v has a hamiltonian
cycle.

Proposition (Abreu, Gauci, DL, Mazzuoccolo, Zerafa,
El.J.Combin. 2021)

G be a hypohamiltonian graph such that ∆(G ) ≤ 3. Then, L(G ) is
PMH.
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Line graphs of graphs with small maximum degree

Another possible improvement of Theorem could be a weaker
assumption on the length of the longest cycle of G (i.e. the
circumference of G , denoted by circ(G )).

We use the following standard operations on cubic graphs
known as Y –reduction (shrinking a triangle to a vertex) and
of its inverse, Y –extension (expanding a vertex to a triangle),
illustrated in next Figure.

Y -reduction

Y -extension
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Line graphs of graphs with small maximum degree

The following Proposition shows that the hamiltonicity
condition in Theorem cannot be relaxed to any other
condition regarding the length of the longest cycle in G .

Indeed, starting from an appropriate cubic graph and
performing suitable Y –extensions,

we obtain a graph of circumference one less than its order
whose line graph is not PMH.

Proposition (Abreu, Gauci, DL, Mazzuoccolo, Zerafa,
El.J.Combin. 2021)

Let G be a hypohamiltonian cubic graph of odd size. Let G ′ be a
graph obtained by performing a Y –extension to all vertices of G
except one. Then, circ(G ′) = |V (G ′)| − 1 and L(G ′) is not PMH.
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Line graphs of graphs with small maximum degree: Final
Remarks and Problems

A most natural question to ask is whether the hamiltonicity
and regularity of a graph are together sufficient conditions to
guarantee the PMH–property of its line graph.

Problem

Let G be an r–regular hamiltonian graph of even size, for r ≥ 4.
Does L(G ) admit the PMH–property?
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Note that not all 4–regular (and so not all eulerian) graphs of
even size have a PMH line graph.

A non-hamiltonian example is given in Figure

It is not hard to check that every perfect matching of L(G )
which contains the edges e1e2 and e3e4 cannot be extended to
a hamiltonian cycle of L(G ), whose vertices are given the
same label as the corresponding edges in G .
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Problem

Let G be a graph of even size which is both eulerian and
hamiltonian. Does L(G ) admit the PMH–property?



Line graphs of graphs with small maximum degree: Final
Remarks and Problems

Since the previous graph and

Problem

Let G be a graph of even size which is both eulerian and
hamiltonian. Does L(G ) admit the PMH–property?



Line graphs of graphs with small maximum degree: Final
Remarks and Problems

v2

v3

v4

v1

v10

v9

v8

v7v6v5

L(G)G

Problem

Let G be a graph of even size which is both eulerian and
hamiltonian. Does L(G ) admit the PMH–property?
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are both not simultaneously eulerian and hamiltonian, we pose a
further problem:

Problem

Let G be a graph of even size which is both eulerian and
hamiltonian. Does L(G ) admit the PMH–property?
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Other classes of graphs whose line graphs admit the
PMH–property: Arbitrarily traceable graphs

Ore (1951) introduced:

A graph G is said to be arbitrarily traceable (or equivalently
randomly eulerian) from a vertex v ∈ V (G ) if every walk
starting from v and not containing any repeated edges can be
completed to an eulerian tour.

Theorem (Abreu, Gauci, DL, Mazzuoccolo, Zerafa,
El.J.Combin. 2021)

Let G be an arbitrarily traceable graph from some vertex such that
G is of even size. Then, its line graph has the PMH–property.
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Other classes of graphs whose line graphs admit the
PMH–property: Complete graphs

In 1976 Daykin proved

Theorem (Daykin - 1976)

If the edges of the complete graph Kn, for n ≥ 6, are coloured in
such a way that no three edges of the same colour are incident to
any given vertex, then there exists a properly coloured Hamiltonian
cycle.

Which we have used to prove that

Theorem (Abreu, Gauci, D.L., Mazzuoccolo, Zerafa -
El.J.Combin. 2021)

For n ≡ 0, 1 mod 4, L(Kn) is PMH.
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Other classes of graphs whose line graphs admit the
PMH–property: Complete Bipartite graphs

Theorem (C.C. Chen and D.E. Daykin - 1976)

Consider an edge-colouring of the complete bipartite graph Km,m

such that no vertex is incident to more than k edges of the same
colour. If m ≥ 25k, then there exists a properly coloured
Hamiltonian cycle.

So for the case k = 2, one could obtain that L(Km,m) is PMH for every
even m ≥ 50.

However, using a different and more technical approach the following has
been proved:

Theorem (Abreu, J.B. Gauci, J.P. Zerafa - 2021)

Let m1 be an even integer and let m2 ≥ 1. Then, L(Km1,m2) does not
have the PH–property if and only if m1 = 2 and m2 is odd.
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Thank you!


