On extremal self-dual \mathbb{Z}_4 -codes

Matteo Mravić matteo.mravic@math.uniri.hr

Department of Mathematics, University of Rijeka, Croatia

16.7.2021.

A joint work with Sanja Rukavina This work has been fully supported by Croatian Science Foundation under the project 6732

Matteo Mravić

On extremal self-dual \mathbb{Z}_4 -codes

16.7.2021. 1 / 19

3 Algorithms

Matteo Mravić

On extremal self-dual \mathbb{Z}_4 -codes

< E> E ∽ へ ⊂ 16.7.2021. 2 / 19

• • • • • • • • • • • •

- A binary linear [n, k] code is a k-dimensional subspace of \mathbb{F}_2^n ,
- The Hamming weight of a vector x ∈ 𝔽ⁿ₂ is the number of nonzero coordinates in x,
- Binary linear codes for which all codewords have weight divisible by four are called *doubly-even*,
- If the minimum weight d of an [n, k] binary code is known, then we refer to the code as an [n, k, d] binary code,
- The dual code of a binary linear code C of length n is

$$C^{\perp} = \{ x \in \mathbb{F}_2^n \mid \langle x, y \rangle = 0 \text{ for all } y \in C \},$$

• C is self-orthogonal if $C \subseteq C^{\perp}$, and self-dual if $C = C^{\perp}$,

- A \mathbb{Z}_4 -code C of length n is a \mathbb{Z}_4 submodule of \mathbb{Z}_4^n .
- Every Z₄ code C contains a set of k₁ + k₂ codewords
 {c₁,..., c_{k₁}, c_{k₁+1},..., c_{k₁+k₂}} such that every codeword in C is
 uniquely expressible in the form

$$\sum_{i=1}^{k_1} a_i c_i + \sum_{i=k_1+1}^{k_1+k_2} a_i c_i,$$

where $a_i \in \mathbb{Z}_4$ for $1 \le i \le k_1$ and $a_i \in \mathbb{Z}_2$ for $k_1 + 1 \le i \le k_1 + k_2$. We say that C is of type $4^{k_1}2^{k_2}$.

The matrix whose rows are c_i, 1 ≤ i ≤ k₁ + k₂, is called a generator matrix for C.

A generator matrix G of a \mathbb{Z}_4 code C is in standard form if

$$G = \left[\begin{array}{ccc} I_{k_1} & A & B_1 + 2B_2 \\ O & 2I_{k_2} & 2D \end{array} \right],$$

where A, B_1, B_2 and D are matrices with entries from \mathbb{F}_2 and O is the $k_2 \times k_1$ zero matrix.

For a \mathbb{Z}_4 -code *C* of length *n* and $x = (x_1, x_2, \ldots, x_n)$ we define the Euclidean weight as $wt_E(x) = n_1(x) + 4n_2(x) + n_3(x)$ where $n_i(x) = |\{x_j | x_j = i, j \in \{1, 2, \ldots, n\}\}|, i = 1, 2, 3.$

The basics

Let C be a \mathbb{Z}_4 code of length n. The dual code C^{\perp} of C is defined as

$$\mathcal{C}^{\perp} = \{ x \in \mathbb{Z}_4^n \mid \langle x, y
angle = 0 ext{ for all } y \in \mathcal{C} \},$$

where $\langle x, y \rangle = x_1y_1 + \cdots + x_ny_n \pmod{4}$ for $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$. The code *C* is *self-dual* if $C = C^{\perp}$. For every \mathbb{Z}_4 code *C* there are following binary codes associated with *C*:

- Residue code: $Res(C) = \{c \pmod{2} \mid c \in C\},\$
- Torsion code: $Tor(C) = \{c \in \mathbb{F}_2^n | 2c \in C\}.$

If C has a generator matrix G in standard form then, Res(C) and Tor(C) have generator matrices

$$G_{Res} = \begin{bmatrix} I_{k_1} & A & B_1 \end{bmatrix},$$

$$G_{Tor} = \begin{bmatrix} I_{k_1} & A & B_1 \\ O & I_{k_2} & D \end{bmatrix}.$$

・ロト ・聞 ト ・ ヨト ・ ヨト …

Theorem¹

Let C be a \mathbb{Z}_4 -code with generating matrix in standard form

$$G = \left[\begin{array}{ccc} I_{k_1} & A & B_1 + 2B_2 \\ O & 2I_{k_2} & 2D \end{array} \right]$$

Code C is self-dual if and only if Res(C) is doubly even, $Res(C) = Tor(C)^{\perp}$ and B_2 is such that rows of G are orthogonal.

¹Pless, V., Leon, J., Fields, J. (1997). All Z4 Codes of Type II and Length 16 Are Known. J. Comb. Theory, Ser. A, 78, 32-50.

Definition

Let *C* be a self-dual \mathbb{Z}_4 code. We say that *C* is Type II if all Euclidean weights of words in *C* are multiples of 8. Otherwise we say that *C* is Type I \mathbb{Z}_4 code.

Theorem²

Let C be a self-dual \mathbb{Z}_4 code of length n. The following hold:

- (i) If C is Type II, then the minimum Euclidean weight of C is at most $8\lfloor \frac{n}{24} \rfloor + 8$.
- (ii) If C is Type I, then the minimum Euclidean weight of C is at most $8 \lfloor \frac{n}{24} \rfloor + 8$ except when $n \equiv 23 \pmod{24}$, in which case the bound is $8 \lfloor \frac{n}{24} \rfloor + 12$. If equality holds in this latter bound, then C is obtained by shortening a Type II code of length n + 1.

Codes meeting these bounds are called Euclidean-extremal.

²W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes. Cambridge: Cambridge University Press, 2003. In Control of Control of

It is known that standard form of a generator matrix of a \mathbb{Z}_4 -code is equivalent to the matrix of the form:

$$G = \left[egin{array}{cc} F & I_k + 2B \ 2H & O \end{array}
ight],$$

where F, B, H are matrices over \mathbb{F}_2 , I_k is $k \times k$ identity matrix and O is zero matrix. In this form the Res(C) and Tor(C) have following generator matrices:

$$G_{Res} = \begin{bmatrix} F & I_k \end{bmatrix},$$
$$G_{Tor} = \begin{bmatrix} F & I_k \\ H & O \end{bmatrix}.$$

By the construction theorem, in order to obtain a self-dual \mathbb{Z}_4 -code, one must choose entries in $B = [b_{ij}]$ s.t. rows of *G* are orthogonal. This gives the following condition:

$$b_{ij} = egin{cases} b_{ji}, \, f_i f_j \equiv 0 (\mathrm{mod} \ 4), \ b_{ji} + 1, \, f_i f_j \equiv 2 (\mathrm{mod} \ 4). \end{cases}$$

So, elements in the lower triangle of *B* are uniquely determined by the upper triangle elements of *B* and the inner product of rows in the matrix *F*. The brute force algorithm consists of checking the extremality of all possible $2^{\frac{k(k-1)}{2}}$ codes obtained from different choices of *B*. Problem: Size of the search space, calculating the minimum Euclidean weight of Type I codes is time consuming even for small lengths.

Modification lemma

Lemma

Let *C* be a \mathbb{Z}_4 -code of length *n* with generator matrix in form:

$$G_C = \begin{bmatrix} F & I_k + 2B \\ 2H & O \end{bmatrix}$$

Let $B' \in M_k(\mathbb{F}_2)$ be the matrix obtained from B by changing a position (i, j), 1 < i < j < k, from 0 to 1, in such way that the code C' with the generator matrix:

$$G_{C'} = \begin{bmatrix} F & I_k + 2B' \\ 2H & O \end{bmatrix}$$

is self-dual. Let $v \in C$ be of the form:

$$v = c_i g_i + c_j g_j + \sum_{\substack{m=1\\m\neq i,j}}^k c_m g_m + \sum_{m=k+1}^{n-2k} c_m g_m,$$

where g_s , $s \in \{1, 2, ..., n - 2k\}$, is the *s*-th row of the matrix G_C . Let $I = \{t \in \{1, 2, ..., k\} - \{i, j\} | (c_t g_t)_i = 2\}$, and $J = \{t \in \{1, 2, ..., k\} - \{i, j\} | (c_t g_t)_j = 2\}$, where $(c_t g_t)_i$ and $(c_t g_t)_j$ stand for the *i*-th and *j*-th coordinate of the codeword $c_t g_t$ respectively. Let $v' \in C'$ be:

$$v' = c_i g'_i + c_j g'_j + \sum_{\substack{m=1\m\neq i,j}}^k c_m g_m + \sum_{m=k+1}^{n-2k} c_m g_m.$$

Then $d_E(v') = d_E(v) + r$, where r = 0 for all c_i and c_j except those given in the following Table.

B(i,j) = B(j,i)]	$B(i,j) \neq B(j,i)$					
Ci	Сј	$ I \pmod{2}$	$ J \pmod{2}$	r		Ci	Cj	<i>I</i> (mod 2)	$ J \pmod{2}$	r
0 1.	1,3	0	х	4		0	1.3	0	х	-4
0	1,5	1	x	-4			1,5	1	х	4
1,3	0	х	0	4	1 2	1,3	0	х	0	-4
1,5	0	х	1	-4		1,5	0	х	1	4
2	1,3	0	х	-4		2	1,3	0	х	4
2	2 1,5 1	1	х	4		2	1,5	1	x	-4
1,3	2	х	0	-4	1,3	1 2	2	х	0	4
1,5		х	1	4		1,5		х	1	-4

Table: Changes of weights in the modification Lemma

・ロト ・日下・ ・ 田下・

Small example

 $v = (3221333121210000) = 2g_1 + g_2, wt_E(v) = 24$

Small example

 $v = (3221333121210000) = 2g_1 + g_2, wt_E(v) = 24$ $v' = (3221333121010000) = 2g'_1 + g'_2, wt_E(v) = 20.$

Modified search algorithm

We say that two matrices B and B' are neighbors if their upper diagonal elements differ in exactly one element. The method of generating a self-dual \mathbb{Z}_4 -code is unchanged and consists of choosing lower diagonal elements of matrix B as previously explained.

- Start with the matrix B s.t. all upper diagonal elements are equal to 0,
- In each iteration of the algorithm do the following:
 - Generate a \mathbb{Z}_4 -code with the chosen matrix B, and set $D = |\{v \in C | 0 < wt_E(v) < 8 | \frac{n}{24} | + 8\}|$,
 - If D = 0 then C is extremal,
 - Calculate sets:

$$\begin{split} S_4 &= \left\{ v \in C | wt_E(v) = 4 \right\}, \\ S_{E-4} &= \left\{ v \in C | wt_E(v) = 8 \left\lfloor \frac{n}{24} \right\rfloor + 4 \right\}, \\ S_E &= \left\{ v \in C | wt_E(v) = 8 \left\lfloor \frac{n}{24} \right\rfloor + 8 \right\}, \end{split}$$

 For every upper diagonal element of matrix B which is equal to 0 calculate the neighbor B' which have that element equal to 2. If B' is unchecked, using the modification lemma, calculate following numbers:

$$\begin{split} &d_4 = | \{ v \in S_4 | wt_E(v') \text{ changes by -4} \} |, \\ &d_{E-4} = | \{ v \in S_{E-4} | wt_E(v') \text{ changes by +4} \} |, \\ &d_E = | \{ v \in S_E | wt_E(v') \text{ changes by -4} \} |, \\ &d = D - d_4 - d_{E-4} + d_E, \end{split}$$

- All B' that have d = 0 are extremal,
- Mark all neighbors of B as checked,
- Repeat the process with the first unchecked matrix B.

Matteo Mravić

(日) (同) (三) (三)

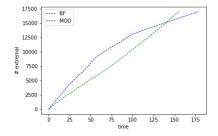
Comparing the algorithms

We tested the algorithm on the code of length 16, with a $\left[16,6,4\right]$ residue code generated with:

< A

.

Comparing the algorithms



- Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz processor, and 16GB RAM memory with frequency 2400MHz, MAGMA,
- Brute force: 155.844s,
- Modified: 200.860s,
- Up until 127.438s of the execution, the modified algorithm was better,
- Worsen over time due to the exploit of unchecked neighbors,
- Due to the vast search space, this can never happen for codes of bigger lengths and with larger dimension of the residue code.

Self-dual \mathbb{Z}_4 -codes of length 32

Code	[n,k,d]	0	4	8	12	16	20	24	28	32
<i>C</i> ₁	[32, 6, 16]	1				62				1
C_2, C_7	[32, 9, 8]	1		28		454		28		1
C3	[32, 12, 4]	1	28	84	420	3030	420	84	28	1
C4	[32, 15, 4]	1	56	924	3976	22854	3976	924	56	1
C ₅	[32, 9, 4]	1	7		49	398	49		7	1
C ₆	[32, 15, 4]	1	42	560	5558	20446	5558	560	42	1
C ₈	[32, 10, 4]	1	14	4	98	790	98	4	14	1
C_9, C_{13}	[32, 16, 4]	1	56	1180	11144	40774	11144	1180	56	1
C ₁₀	[32, 7, 8]	1		4		118		4		1
C ₁₁	[32, 10, 8]	1		32	112	734	112	32		1
C ₁₂	[32, 13, 4]	1	28	228	868	5942	868	228	28	1
C ₁₄	[32, 10, 8]	1		60		902		60		1
C ₁₅	[32, 10, 4]	1	8	28	56	838	56	28	8	1
C ₁₆	[32, 16, 4]	1	120	1820	8008	45638	8008	1820	120	1
C ₁₇	[32, 7, 4]	1	1		7	110	7		1	1
C ₁₈	[32, 10, 4]	1	8	7	140	712	140	7	8	1
C ₁₉	[32, 13, 4]	1	36	196	924	5878	924	196	36	1
C ₂₀	[32, 10, 4]	1	1	42	63	810	63	42	1	1
C ₂₁	[32, 16, 4]	1	50	1120	11438	40318	11438	1120	50	1

Table: Weight distributions of self-orthogonal binary codes C_1, \ldots, C_{21}

On extremal self-dual \mathbb{Z}_4 -codes

Ban, S., Crnkovic, D., Mravic, M., Rukavina, S., New extremal Type II \mathbb{Z}_4 -codes of length 32 obtained from Hadamard matrices: Discrete Mathematics, Algorithms and Applications, 2019.

Extremal \mathbb{Z}_4 -codes obtained by the random search (BF)

The binary	he binary The number of obtained		E ₁₆	The binary	
code	extremal \mathbb{Z}_4 codes	type		residue code	
<i>C</i> ₁	118	4 ⁶ 2 ²⁰	128216	[32,6,16]	
<i>C</i> ₂	114	4 ⁹ 2 ¹⁴	120152	[32,9,8]	
C ₇	91	4 ⁹ 2 ¹⁴	120152	[32,9,8]	
C ₁₀	296	4 ⁷ 2 ¹⁸	123608	[32,7,8]	
C ₁₄	304	4 ¹⁰ 2 ¹²	119576	[32,10,8]	

Table: Extremal Type II \mathbb{Z}_4 codes from C_1, \ldots, C_{21}

- Codes of type 4⁶2²⁰ are known and all equivalent
- Only known code of type 4^72^{18} , 4^92^{14} , $4^{10}2^{12}$ have residue code of $d = 4 \Rightarrow$ new codes.

Extremal \mathbb{Z}_4 -codes obtained by random search (BF)

The binary	The number of obtained	At least	The	The binary
code	extremal \mathbb{Z}_4 codes	non equivalent	type	residue code
<i>C</i> ₃	13	10	4 ¹² 2 ¹²	[32,12,4]
<i>C</i> ₄	6	6	4 ¹⁵ 2 ²	[32,15,4]
<i>C</i> ₈	35	2	4 ¹⁰ 2 ¹²	[32,10,4]
C ₁₂	5	5	4 ¹³ 2 ¹⁰	[32,13,4]
C ₁₅	210	2	4 ¹⁰ 2 ¹²	[32,10,4]
C ₁₆	272	240	4 ¹⁶ 2 ⁰	[32,16,4]
C ₁₈	44	1	4 ¹⁰ 2 ¹²	[32,10,4]
C ₁₉	188	177	4 ¹³ 2 ¹⁰	[32,13,4]

Table: Extremal Type I \mathbb{Z}_4 codes from C_1, \ldots, C_{21}

- In Asamov table of Z_4 code there are 2 codes of type $4^{16}2^0$,
- Other codes aren't in Asamov table

Extremal \mathbb{Z}_4 -codes obtained by the modified algorithm

We obtained extremal \mathbb{Z}_4 -codes with residue codes C_5 and C_{11} :

•
$$C_5$$
, [32, 9, 4], $A_4 = 7$:

- 4⁹2¹⁴
- In total 1664 codes are obtained,
- At least 3 nonequivalent codes, of which one is Type II, and two Type I,
- Only known 4^92^{12} Type II code³ have the residue code with $A_4 = 6$, therefore the obtained Type II code is new,
- Type I codes are not in the Asamov table.

•
$$C_{11}$$
, [32, 10, 8], $A_4 = 0$:

- 4¹⁰2¹²
- In total 4800 codes are obtained,
- At least 3 nonequivalent codes, of which one is Type II, and two Type I,
- Only known $4^{10}2^{12}$ Type II code³ have the residue code with $A_4 = 10$, therefore the obtained Type II code is new,
- Type I codes are not in the Asamov table.

³Harada, M. (2011). On the residue codes of extremal Type II Z4-codes of lengths 32 and 40. Discrete Mathematics, 311(20), 2148–2157. $\Box \mapsto \langle \overline{\bigcirc} \rangle \mapsto \langle \overline{\bigcirc} \rangle \to \langle \overline{\bigcirc} \rangle \to \langle \overline{\bigcirc} \rangle \to \langle \overline{\bigcirc} \rangle$