A family of non-Cayley cores that is constructed from vertex-transitive or strongly regular self-complementary graphs

MARKO OREL

University of Primorska, Slovenia & IMFM, Slovenia

Combinatorial Designs and Codes, Rijeka, July 16, 2021

(日) (四) (문) (문) (문)

 Λ finite simple/undirected graph with $|V(\Lambda)| \ge 0$

A homomorphism between graphs Γ_1 and Γ_2 is a map $\Phi: V(\Gamma_1) \to V(\Gamma_2)$ such that

$\{u,v\} \in E(\Gamma_1) \Longrightarrow \{\Phi(u),\Phi(v)\} \in E(\Gamma_2).$

If $\Gamma_1 = \Gamma_2$, then homomorphism = *endomorphism*.

Cores

A graph is a *core* if all its endomorphisms are automorphisms.

- complete graphs
- odd cycles

A finite simple/undirected graph with $|V(\Lambda)| \ge 0$

```
A homomorphism between graphs \Gamma_1 and \Gamma_2 is a map \Phi: V(\Gamma_1) \to V(\Gamma_2) such that
```

$\{u,v\} \in E(\Gamma_1) \Longrightarrow \{\Phi(u),\Phi(v)\} \in E(\Gamma_2).$

If $\Gamma_1 = \Gamma_2$, then homomorphism = *endomorphism*.

Cores

A graph is a *core* if all its endomorphisms are automorphisms.

- complete graphs
- odd cycles

A finite simple/undirected graph with $|V(\Lambda)| \ge 0$

A homomorphism between graphs Γ_1 and Γ_2 is a map $\Phi: V(\Gamma_1) \to V(\Gamma_2)$ such that

 $\{u,v\} \in E(\Gamma_1) \Longrightarrow \{\Phi(u),\Phi(v)\} \in E(\Gamma_2).$

If $\Gamma_1 = \Gamma_2$, then homomorphism = *endomorphism*.

Cores

A graph is a *core* if all its endomorphisms are automorphisms.

- complete graphs
- odd cycles

A finite simple/undirected graph with $|V(\Lambda)| \ge 0$

A homomorphism between graphs Γ_1 and Γ_2 is a map $\Phi: V(\Gamma_1) \to V(\Gamma_2)$ such that

 $\{u,v\} \in E(\Gamma_1) \Longrightarrow \{\Phi(u),\Phi(v)\} \in E(\Gamma_2).$

If $\Gamma_1 = \Gamma_2$, then homomorphism = *endomorphism*.

Cores

A graph is a *core* if all its endomorphisms are automorphisms.

- complete graphs
- odd cycles

Core of a graph

A subgraph Γ' in Γ is a *core of* Γ if:

- Γ' is a core
- $\bullet\,$ There exists a graph homomorphism $\Phi:\Gamma\to\Gamma'$

Core of a graph

A subgraph Γ' in Γ is a *core of* Γ if:

- Γ' is a core
- $\bullet\,$ There exists a graph homomorphism $\Phi:\Gamma\to\Gamma'$

Example: $\operatorname{core}(C_4) = K_2$

Core of a graph

A subgraph Γ' in Γ is a *core of* Γ if:

- Γ' is a core
- $\bullet\,$ There exists a graph homomorphism $\Phi:\Gamma\to\Gamma'$

Example: $\operatorname{core}(C_4) = K_2$

Proposition (cf. Godsil & Royle)

Every graph Γ has a core, which is an induced subgraph and is unique up to isomorphism.

୬୯୯ 4/17

4/17

4/17

A famous core: the Petersen graph

A generalization: Kneser graphs K(v, r)

$$V(K(v,r)) = \{S \subseteq \{1,...,v\} : |S| = r\} \\ E(K(v,r)) = \{\{S_1, S_2\} : S_1 \cap S_2 = \emptyset\}$$

cf. Godsil, Royle 2001

If v > 2r, then K(v, r) is a core.

Another generalization: $HGL_n(\mathbb{F}_4)$

$$\mathbb{F}_4 = \{0, 1, i, 1+i\} = \mathbb{F}_2 + i\mathbb{F}_2, \quad i^2 = 1+i = \overline{i}$$

 $\begin{aligned} V(HGL_n(\mathbb{F}_4)) &= \{ \text{invertible Hermitian } n \times n \text{ matrices over } \mathbb{F}_4 \} \\ E(HGL_n(\mathbb{F}_4)) &= \{ \{A_1, A_2\} : \operatorname{rank}(A_1 - A_2) = 1 \} \end{aligned}$

Orel, E-JC 2015 If $n \ge 2$, then $HGL_n(\mathbb{F}_4)$ is a core.

୦୯୯ 7/17

Yet another generalization: complementary prism $\Gamma\overline{\Gamma}$

(my former notation: $\Gamma \equiv \overline{\Gamma}$)

If Γ is a graph with $V(\Gamma) = \{v_1, ..., v_n\}$ let $V(\Gamma\overline{\Gamma}) = W_1 \cup W_2$, $W_1 = \{(v_1, 1), ..., (v_n, 1)\}$ and $W_2 = \{(v_1, 2), ..., (v_n, 2)\}$, and let $E(\Gamma\overline{\Gamma})$ be:

$$\left\{ \{ (u,1), (v,1) \} : \{ u,v \} \in E(\Gamma) \right\} \\ \cup \left\{ \{ (u,2), (v,2) \} : \{ u,v \} \in E(\bar{\Gamma}) \right\} \\ \cup \left\{ \{ (u,1), (u,2) \} : u \in V(\Gamma) \right\}.$$

Main question

When is $\Gamma\overline{\Gamma}$ a core?

Other problems

- $Aut(\Gamma\overline{\Gamma})$; related to
 - self-complementary vertex-transitive graphs
 - non-Cayley vertex-transitive graphs
- Hamiltonicity of $\Gamma\bar{\Gamma}$

Already known results: diameter and spectrum

Lemma (Haynes, Henning, Slater, van der Merwe, 2007)

 $\Gamma\bar{\Gamma}$ is a connected graph with $\mathrm{diam}(\Gamma\bar{\Gamma})\leq 3.$ Moreover,

$$\operatorname{diam}(\Gamma\overline{\Gamma}) = 1 \Longleftrightarrow \Gamma \cong K_1,$$
$$\operatorname{diam}(\Gamma\overline{\Gamma}) = 2 \Longleftrightarrow \operatorname{diam}(\Gamma) = 2 = \operatorname{diam}(\overline{\Gamma}).$$

Lemma (Cardoso, Carvalho, de Freitas, Vinagre, 2018)

If Γ is a connected k-regular graph on n vertices with eigenvalues $k = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, then the eigenvalues of $\Gamma\overline{\Gamma}$ equal

$$\left\{\frac{n-1\pm\sqrt{(n-1)^2-4((n-k-1)k-1)}}{2}\right\} \cup \left\{\frac{-1\pm\sqrt{1+4(\lambda_i^2+\lambda_i+1)}}{2}: 2\le i\le n\right\}.$$

Already known results: diameter and spectrum

Lemma (Haynes, Henning, Slater, van der Merwe, 2007)

 $\Gamma\bar{\Gamma}$ is a connected graph with $\mathrm{diam}(\Gamma\bar{\Gamma})\leq 3.$ Moreover,

$$diam(\Gamma\overline{\Gamma}) = 1 \iff \Gamma \cong K_1,$$
$$diam(\Gamma\overline{\Gamma}) = 2 \iff diam(\Gamma) = 2 = diam(\overline{\Gamma}).$$

Lemma (Cardoso, Carvalho, de Freitas, Vinagre, 2018)

If Γ is a connected k-regular graph on n vertices with eigenvalues $k = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, then the eigenvalues of $\Gamma \overline{\Gamma}$ equal

$$\left\{\frac{n-1\pm\sqrt{(n-1)^2-4((n-k-1)k-1)}}{2}\right\} \cup \left\{\frac{-1\pm\sqrt{1+4(\lambda_i^2+\lambda_i+1)}}{2}: 2\le i\le n\right\}.$$

$$\begin{split} &\operatorname{Aut}(\Gamma) = \{\operatorname{automorphisms} \, \operatorname{of} \Gamma \} \\ &\overline{\operatorname{Aut}(\Gamma)} = \{\operatorname{antimorphisms} \, \operatorname{of} \Gamma \} = \{\operatorname{isomorphisms} \Gamma \to \bar{\Gamma} \} \end{split}$$

Definition

```
\Gamma is self-complementary (s.c.) if \overline{\operatorname{Aut}(\Gamma)} \neq \emptyset
```

```
Examples of s.c. graphs
```

 C_5 , A-graph

$$\begin{split} &\operatorname{Aut}(\Gamma) = \{\operatorname{automorphisms} \, \operatorname{of} \Gamma \} \\ &\overline{\operatorname{Aut}(\Gamma)} = \{\operatorname{antimorphisms} \, \operatorname{of} \Gamma \} = \{\operatorname{isomorphisms} \Gamma \to \bar{\Gamma} \} \end{split}$$

Definition

 Γ is self-complementary (s.c.) if $\overline{\operatorname{Aut}(\Gamma)} \neq \emptyset$

Examples of s.c. graphs

 C_5 , A-graph

$$\begin{split} &\operatorname{Aut}(\Gamma) = \{\operatorname{automorphisms} \, \operatorname{of} \Gamma \} \\ &\overline{\operatorname{Aut}(\Gamma)} = \{\operatorname{antimorphisms} \, \operatorname{of} \Gamma \} = \{\operatorname{isomorphisms} \Gamma \to \bar{\Gamma} \} \end{split}$$

Definition

 Γ is self-complementary (s.c.) if $\overline{\operatorname{Aut}(\Gamma)} \neq \emptyset$

Examples of s.c. graphs

 C_5 , A-graph

A

$$\begin{split} &\operatorname{Aut}(\Gamma) = \{\operatorname{automorphisms} \, \operatorname{of} \Gamma \} \\ &\overline{\operatorname{Aut}(\Gamma)} = \{\operatorname{antimorphisms} \, \operatorname{of} \Gamma \} = \{\operatorname{isomorphisms} \Gamma \to \bar{\Gamma} \} \end{split}$$

Definition

 Γ is self-complementary (s.c.) if $\overline{\operatorname{Aut}(\Gamma)} \neq \emptyset$

Examples of s.c. graphs C_5 , A-graph

Proposition (Orel 2021+)

- If $\Gamma = {\it C}_5(\Lambda),$ then ${\rm Aut}(\Gamma\bar{\Gamma})$ is isomorphic to
 - S_5 if $|V(\Lambda)| = 1$
 - $\left(\operatorname{Aut}(\Gamma) \cup \overline{\operatorname{Aut}(\Gamma)}\right) \rtimes \mathbb{Z}_2$ if Λ is s.c. with $|V(\Lambda)| \neq 1$
 - $\operatorname{Aut}(\Gamma) \rtimes \mathbb{Z}_2$ if Λ is not s.c.

Proposition (Orel 2021+)

If $\Gamma = A(\Lambda)$, then $\operatorname{Aut}(\Gamma\overline{\Gamma})$ is isomorphic to

- $(\operatorname{Aut}(\Gamma) \cup \overline{\operatorname{Aut}(\Gamma)}) \rtimes \mathbb{Z}_2$ if Λ is s.c.
- $\operatorname{Aut}(\Gamma) \rtimes \mathbb{Z}_2$ if Λ is not s.c.

Theorem (Orel 2021+

- If $\Gamma \ncong C_5(\Lambda), A(\Lambda)$, then $\operatorname{Aut}(\Gamma\overline{\Gamma})$ is isomorphic to
 - $\operatorname{Aut}(\Gamma) \cup \overline{\operatorname{Aut}(\Gamma)}$ if Γ is s.c.
 - $\operatorname{Aut}(\Gamma)$ if Γ is not s.c.

Proposition (Orel 2021+)

If $\Gamma = {\it C}_5(\Lambda),$ then ${\rm Aut}(\Gamma\bar{\Gamma})$ is isomorphic to

- S_5 if $|V(\Lambda)| = 1$
- $\left(\operatorname{Aut}(\Gamma) \cup \overline{\operatorname{Aut}(\Gamma)}\right) \rtimes \mathbb{Z}_2$ if Λ is s.c. with $|V(\Lambda)| \neq 1$
- $\operatorname{Aut}(\Gamma) \rtimes \mathbb{Z}_2$ if Λ is not s.c.

Proposition (Orel 2021+)

If $\Gamma = A(\Lambda)$, then $\operatorname{Aut}(\Gamma\overline{\Gamma})$ is isomorphic to

- $\left(\operatorname{Aut}(\Gamma)\cup \overline{\operatorname{Aut}(\Gamma)}\right)\rtimes \mathbb{Z}_2$ if Λ is s.c.
- $\operatorname{Aut}(\Gamma) \rtimes \mathbb{Z}_2$ if Λ is not s.c.

Theorem (Orel 2021+

If $\Gamma \ncong C_5(\Lambda), A(\Lambda)$, then $\operatorname{Aut}(\Gamma\overline{\Gamma})$ is isomorphic to

- $\operatorname{Aut}(\Gamma) \cup \overline{\operatorname{Aut}(\Gamma)}$ if Γ is s.c.
- $Aut(\Gamma)$ if Γ is not s.c.

୦୯୯ 12/17

Proposition (Orel 2021+)

If $\Gamma = {\it C}_5(\Lambda),$ then ${\rm Aut}(\Gamma\bar{\Gamma})$ is isomorphic to

- S₅ if |V(Λ)| = 1
- $\left(\operatorname{Aut}(\Gamma) \cup \overline{\operatorname{Aut}(\Gamma)}\right) \rtimes \mathbb{Z}_2$ if Λ is s.c. with $|V(\Lambda)| \neq 1$
- $\operatorname{Aut}(\Gamma) \rtimes \mathbb{Z}_2$ if Λ is not s.c.

Proposition (Orel 2021+)

If $\Gamma = A(\Lambda)$, then $\operatorname{Aut}(\Gamma\overline{\Gamma})$ is isomorphic to

- $\left(\operatorname{Aut}(\Gamma)\cup \overline{\operatorname{Aut}(\Gamma)}\right)\rtimes \mathbb{Z}_2$ if Λ is s.c.
- $\operatorname{Aut}(\Gamma) \rtimes \mathbb{Z}_2$ if Λ is not s.c.

Theorem (Orel 2021+)

If $\Gamma \ncong C_5(\Lambda), A(\Lambda)$, then $\operatorname{Aut}(\Gamma\overline{\Gamma})$ is isomorphic to

- $\operatorname{Aut}(\Gamma) \cup \overline{\operatorname{Aut}(\Gamma)}$ if Γ is s.c.
- $\operatorname{Aut}(\Gamma)$ if Γ is not s.c.

Corollary (Orel 2021+)

For each graph
$$\Gamma$$
, $\frac{|\operatorname{Aut}(\Gamma\overline{\Gamma})|}{|\operatorname{Aut}(\Gamma)|} \in \{1, 2, 4, 12\}.$

Corollary (Orel 2021+)

 $\Gamma\overline{\Gamma}$ is vertex-transitive if and only if Γ is vertex-transitive and s.c.

Corollary (Orel 2021+)

If $|V(\Gamma)| > 1$, then $\Gamma\overline{\Gamma}$ is not a Cayley graph.

Corollary (Orel 2021+)

For each graph
$$\Gamma$$
, $\frac{|\operatorname{Aut}(\Gamma\overline{\Gamma})|}{|\operatorname{Aut}(\Gamma)|} \in \{1, 2, 4, 12\}.$

Corollary (Orel 2021+)

 $\Gamma\bar{\Gamma}$ is vertex-transitive if and only if Γ is vertex-transitive and s.c.

Corollary (Orel 2021+)

If $|V(\Gamma)| > 1$, then $\Gamma\overline{\Gamma}$ is not a Cayley graph.

Corollary (Orel 2021+)

For each graph
$$\Gamma$$
, $\frac{|\operatorname{Aut}(\Gamma\overline{\Gamma})|}{|\operatorname{Aut}(\Gamma)|} \in \{1, 2, 4, 12\}.$

Corollary (Orel 2021+)

 $\Gamma\bar{\Gamma}$ is vertex-transitive if and only if Γ is vertex-transitive and s.c.

Corollary (Orel 2021+)

If $|V(\Gamma)| > 1$, then $\Gamma\overline{\Gamma}$ is not a Cayley graph.

Aut $(\Gamma\overline{\Gamma})$ & corollaries; Hamiltonicity

It follows from a result of Muzychuk (Bull. London Math. Soc. 1999) that the orders of graphs $\Gamma\overline{\Gamma}$, which are vertex-transitive (and non-Cayley) are precisely the values

 $2p_1^{\alpha_1}\cdots p_s^{\alpha_s}$, where $p_i^{\alpha_i} \equiv 1 \pmod{4}$ for all *i*

 $(p_1,\ldots,p_s$ are distinct primes, $\alpha_i \geq 1)$ or equivalently

$$2((2i)^2 + (2j+1)^2)$$
 with $i, j \in \{0, 1, 2, \ldots\}$ and $(i, j) \neq (0, 0)$.

 $\Gamma\bar{\Gamma}$ is NOT a lexicographic product of two graphs with at least 2 vertices.

Proposition (Orel 2021+)

If Γ is s.c. vertex-transitive graph on n > 5 vertices, then $\Gamma\overline{\Gamma}$ is Hamiltonian-connected.

Aut $(\Gamma\overline{\Gamma})$ & corollaries; Hamiltonicity

It follows from a result of Muzychuk (Bull. London Math. Soc. 1999) that the orders of graphs $\Gamma\overline{\Gamma}$, which are vertex-transitive (and non-Cayley) are precisely the values

 $2p_1^{\alpha_1}\cdots p_s^{\alpha_s}$, where $p_i^{\alpha_i} \equiv 1 \pmod{4}$ for all i

 $(p_1,\ldots,p_s$ are distinct primes, $lpha_i\geq 1)$ or equivalently

$$2((2i)^2 + (2j+1)^2)$$
 with $i, j \in \{0, 1, 2, \ldots\}$ and $(i, j) \neq (0, 0)$.

 $\Gamma\bar{\Gamma}$ is NOT a lexicographic product of two graphs with at least 2 vertices.

Proposition (Orel 2021+)

If Γ is s.c. vertex-transitive graph on n > 5 vertices, then $\Gamma\overline{\Gamma}$ is Hamiltonian-connected.

Aut $(\Gamma\overline{\Gamma})$ & corollaries; Hamiltonicity

It follows from a result of Muzychuk (Bull. London Math. Soc. 1999) that the orders of graphs $\Gamma\overline{\Gamma}$, which are vertex-transitive (and non-Cayley) are precisely the values

 $2p_1^{\alpha_1}\cdots p_s^{\alpha_s}$, where $p_i^{\alpha_i} \equiv 1 \pmod{4}$ for all i

 $(p_1,\ldots,p_s$ are distinct primes, $lpha_i\geq 1)$ or equivalently

$$2((2i)^2 + (2j+1)^2)$$
 with $i, j \in \{0, 1, 2, \ldots\}$ and $(i, j) \neq (0, 0)$.

 $\Gamma\bar{\Gamma}$ is NOT a lexicographic product of two graphs with at least 2 vertices.

Proposition (Orel 2021+)

If Γ is s.c. vertex-transitive graph on n > 5 vertices, then $\Gamma\overline{\Gamma}$ is Hamiltonian-connected.

Lemma

If $\Gamma \ncong K_2, \overline{K_2}$, then there are only 5 possibilities for $\operatorname{core}(\Gamma\overline{\Gamma})$: **1** $\Gamma\overline{\Gamma}$ is a core

- $V(\operatorname{core}(\Gamma\overline{\Gamma})) \subseteq W_2 \text{ and } \operatorname{core}(\Gamma\overline{\Gamma}) \cong \operatorname{core}(\overline{\Gamma})$
- complicated but highly constrained structure
- S complicated but highly constrained structure

Example of possibility (4), (5): $\Gamma = C_3 + C_5$

A D A A B A A B A A B A

Corollary (Orel 2021+)

If Γ is $(\frac{n-1}{2})$ -regular, where $|V(\Gamma)| = n$, then only possibilities (1), (2), (3) can occur.

The same result is true for each graph Γ with at least 4 vertices if we assume that $\operatorname{core}(\Gamma\bar{\Gamma})$ is regular.

Theorem (Orel 2021+)

If Γ is strongly regular s.c. graph, then $\Gamma\overline{\Gamma}$ is a core.

Theorem (Orel 2021+)

Corollary (Orel 2021+)

If Γ is $(\frac{n-1}{2})$ -regular, where $|V(\Gamma)| = n$, then only possibilities (1), (2), (3) can occur.

The same result is true for each graph Γ with at least 4 vertices if we assume that $\operatorname{core}(\Gamma\bar{\Gamma})$ is regular.

Theorem (Orel 2021+)

If Γ is strongly regular s.c. graph, then $\Gamma\overline{\Gamma}$ is a core.

Theorem (Orel 2021+)

Corollary (Orel 2021+)

If Γ is $(\frac{n-1}{2})$ -regular, where $|V(\Gamma)| = n$, then only possibilities (1), (2), (3) can occur.

The same result is true for each graph Γ with at least 4 vertices if we assume that $\operatorname{core}(\Gamma\bar{\Gamma})$ is regular.

Theorem (Orel 2021+)

If Γ is strongly regular s.c. graph, then $\Gamma\overline{\Gamma}$ is a core.

Theorem (Orel 2021+)

Corollary (Orel 2021+)

If Γ is $(\frac{n-1}{2})$ -regular, where $|V(\Gamma)| = n$, then only possibilities (1), (2), (3) can occur.

The same result is true for each graph Γ with at least 4 vertices if we assume that $\operatorname{core}(\Gamma\bar{\Gamma})$ is regular.

Theorem (Orel 2021+)

If Γ is strongly regular s.c. graph, then $\Gamma\overline{\Gamma}$ is a core.

Theorem (Orel 2021+)

Thank you for your attention!

marko.orel@upr.si

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで