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Γ finite simple/undirected graph with |V (Γ)| ≥ 1

Λ finite simple/undirected graph with |V (Λ)| ≥ 0

A homomorphism between graphs Γ1 and Γ2 is a map
Φ : V (Γ1)→ V (Γ2) such that

{u, v} ∈ E (Γ1) =⇒ {Φ(u),Φ(v)} ∈ E (Γ2).

If Γ1 = Γ2, then homomorphism = endomorphism.

Cores

A graph is a core if all its endomorphisms are automorphisms.

Basic examples:

complete graphs

odd cycles
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Core of a graph

A subgraph Γ′ in Γ is a core of Γ if:

Γ′ is a core

There exists a graph homomorphism Φ : Γ→ Γ′

Example: core(C4) = K2

Proposition (cf. Godsil & Royle)

Every graph Γ has a core, which is an induced subgraph and is
unique up to isomorphism.
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Many ‘nice’ graphs are cores or their cores are complete
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on 88v,u< : dHu,vL=2<

Roberson 2019, Algebr, Comb.

primitive
strongly regular

SnHFqL,Orel,JACO 2012

HGLnHFq2 L, q³4
Orel, LAA 2016

HGLnHF4L, SGLnHF2L
Orel, E-JC 2015

VOn, Orel, JCTA 2017
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A famous core: the Petersen graph
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A generalization: Kneser graphs K (v , r)

V (K (v , r)) = {S ⊆ {1, . . . , v} : |S | = r}
E (K (v , r)) = {{S1, S2} : S1 ∩ S2 = ∅}

82,5<

82,3<81,3<

81,4<
84,5<

83,4<

81,5<82,4<

83,5<

81,2<

a

cf. Godsil, Royle 2001

If v > 2r , then K (v , r) is a core.
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Another generalization: HGLn(F4)

F4 = {0, 1, ı, 1 + ı} = F2 + ıF2, ı2 = 1 + ı = ı̄

V (HGLn(F4)) = {invertible Hermitian n × n matrices over F4}
E (HGLn(F4)) = {{A1,A2} : rank(A1 − A2) = 1}

Orel, E-JC 2015

If n ≥ 2, then HGLn(F4) is a core.
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Yet another generalization: complementary prism ΓΓ̄

(my former notation: Γ ≡ Γ̄)

If Γ is a graph with V (Γ) = {v1, . . . , vn} let V (ΓΓ̄) = W1 ∪W2,

W1 = {(v1, 1), . . . , (vn, 1)} and W2 = {(v1, 2), . . . , (vn, 2)},

and let E (ΓΓ̄) be:{
{(u, 1), (v , 1)} : {u, v} ∈ E (Γ)

}
∪
{
{(u, 2), (v , 2)} : {u, v} ∈ E (Γ̄)

}
∪
{
{(u, 1), (u, 2)} : u ∈ V (Γ)

}
.
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Yet another generalization: ΓΓ̄

Main question

When is ΓΓ̄ a core?

Other problems

Aut(ΓΓ̄); related to

self-complementary vertex-transitive graphs
non-Cayley vertex-transitive graphs

Hamiltonicity of ΓΓ̄
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Already known results: diameter and spectrum

Lemma (Haynes, Henning, Slater, van der Merwe, 2007)

ΓΓ̄ is a connected graph with diam(ΓΓ̄) ≤ 3. Moreover,

diam(ΓΓ̄) = 1⇐⇒ Γ ∼= K1,

diam(ΓΓ̄) = 2⇐⇒ diam(Γ) = 2 = diam(Γ̄).

Lemma (Cardoso, Carvalho, de Freitas, Vinagre, 2018)

If Γ is a connected k-regular graph on n vertices with eigenvalues
k = λ1 ≥ λ2 ≥ · · · ≥ λn, then the eigenvalues of ΓΓ̄ equaln − 1±

√
(n − 1)2 − 4

(
(n − k − 1)k − 1

)
2


∪

−1±
√

1 + 4(λ2
i + λi + 1)

2
: 2 ≤ i ≤ n

 .

10 / 17



Already known results: diameter and spectrum

Lemma (Haynes, Henning, Slater, van der Merwe, 2007)

ΓΓ̄ is a connected graph with diam(ΓΓ̄) ≤ 3. Moreover,

diam(ΓΓ̄) = 1⇐⇒ Γ ∼= K1,

diam(ΓΓ̄) = 2⇐⇒ diam(Γ) = 2 = diam(Γ̄).

Lemma (Cardoso, Carvalho, de Freitas, Vinagre, 2018)

If Γ is a connected k-regular graph on n vertices with eigenvalues
k = λ1 ≥ λ2 ≥ · · · ≥ λn, then the eigenvalues of ΓΓ̄ equaln − 1±

√
(n − 1)2 − 4

(
(n − k − 1)k − 1

)
2


∪

−1±
√

1 + 4(λ2
i + λi + 1)

2
: 2 ≤ i ≤ n

 .

10 / 17



Two special families of graphs: C5(Λ), A(Λ)

Aut(Γ) = {automorphisms of Γ}
Aut(Γ) = {antimorphisms of Γ} = {isomorphisms Γ→ Γ̄}

Definition

Γ is self-complementary (s.c.) if Aut(Γ) 6= ∅

Examples of s.c. graphs

C5, A-graph

C5(Λ) = constructed from C5 by replacing one vertex with graph Λ
A(Λ) = constructed from A by replacing the ‘top’ vertex with Λ
FACT: if Λ is s.c., then C5(Λ) and A(Λ) are s.c.
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Aut(ΓΓ̄)

Proposition (Orel 2021+)

If Γ = C5(Λ), then Aut(ΓΓ̄) is isomorphic to

S5 if |V (Λ)| = 1(
Aut(Γ) ∪Aut(Γ)

)
o Z2 if Λ is s.c. with |V (Λ)| 6= 1

Aut(Γ)o Z2 if Λ is not s.c.

Proposition (Orel 2021+)

If Γ = A(Λ), then Aut(ΓΓ̄) is isomorphic to(
Aut(Γ) ∪Aut(Γ)

)
o Z2 if Λ is s.c.

Aut(Γ)o Z2 if Λ is not s.c.

Theorem (Orel 2021+)

If Γ � C5(Λ),A(Λ), then Aut(ΓΓ̄) is isomorphic to

Aut(Γ) ∪Aut(Γ) if Γ is s.c.

Aut(Γ) if Γ is not s.c.
12 / 17
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Aut(ΓΓ̄) & corollaries

Corollary (Orel 2021+)

For each graph Γ, |Aut(ΓΓ̄)|
|Aut(Γ)| ∈ {1, 2, 4, 12}.

Corollary (Orel 2021+)

ΓΓ̄ is vertex-transitive if and only if Γ is vertex-transitive and s.c.

Corollary (Orel 2021+)

If |V (Γ)| > 1, then ΓΓ̄ is not a Cayley graph.
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Aut(ΓΓ̄) & corollaries; Hamiltonicity

It follows from a result of Muzychuk (Bull. London Math. Soc.
1999) that the orders of graphs ΓΓ̄, which are vertex-transitive
(and non-Cayley) are precisely the values

2pα1
1 · · · p

αs
s , where pαi

i ≡ 1(mod 4) for all i

(p1, . . . , ps are distinct primes, αi ≥ 1) or equivalently

2
(

(2i)2 + (2j + 1)2
)

with i , j ∈ {0, 1, 2, . . .} and (i , j) 6= (0, 0).

ΓΓ̄ is NOT a lexicographic product of two graphs with at least 2
vertices.

Proposition (Orel 2021+)

If Γ is s.c. vertex-transitive graph on n > 5 vertices, then ΓΓ̄ is
Hamiltonian-connected.
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core(ΓΓ̄)

Lemma

If Γ � K2,K2, then there are only 5 possibilities for core(ΓΓ̄):

1 ΓΓ̄ is a core

2 V
(
core(ΓΓ̄)

)
⊆W1 and core(ΓΓ̄) ∼= core(Γ)

3 V
(
core(ΓΓ̄)

)
⊆W2 and core(ΓΓ̄) ∼= core(Γ̄)

4 complicated but highly constrained structure

5 complicated but highly constrained structure

Example of possibility (4), (5): Γ = C3 + C5
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core(ΓΓ̄)

Corollary (Orel 2021+)

If Γ is (n−1
2 )-regular, where |V (Γ)| = n, then only possibilities (1),

(2), (3) can occur.

The same result is true for each graph Γ with at least 4 vertices if
we assume that core(ΓΓ̄) is regular.

Theorem (Orel 2021+)

If Γ is strongly regular s.c. graph, then ΓΓ̄ is a core.

Theorem (Orel 2021+)

If Γ is s.c. vertex-transitive graph, and Γ is either a core or its core
is complete, then ΓΓ̄ is a core.
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Thank you for your attention!

marko.orel@upr.si


