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A finite simple/undirected graph with |V(A)| >0

A homomorphism between graphs 'y and > is a map
®: V([1) — V(I2) such that

{u,v} € E(T'1) = {®(u), d(v)} € E(I'2).

If 1 = I3, then homomorphism = endomorphism.

J

A graph is a core if all its endomorphisms are automorphisms. \

Basic examples:
@ complete graphs

@ odd cycles
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Core of a graph

A subgraph " in T is a core of T if:
o [is a core

@ There exists a graph homomorphism & : [ — [’

Example: core(Gs) = Ko

Proposition (cf. Godsil & Royle)

Every graph I has a core, which is an induced subgraph and is
unique up to isomorphism.
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Many ‘nice’ graphs are cores or their cores are complete
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Cameron, Kazanidis 2008 Godsil, Royle 2011
J. Aust. Math. Soc. Ann.Comb.

connected, regular,
Aut(I') acts transitivel
on {{v,u} : d(u,v)=2}

Aut(T) actstransitively
on non—edges

Si(Fg),0rel,JACO 2012

primitive
strongly regular

HGLn(F), g4
Orel, LAA 2016

HGLn(F4), SGLn(F2)
Orel, E-JC 2015

Roberson 2019, Algebr, Comb. VO,, Orel, JCTA 2017



A famous core: the Petersen graph
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A generalization: Kneser graphs K(v, r)

VK(v, 1) = (S C {L,....v} :|S| = 1}
E(K(v.r)) = {{SL. 52} : 111 S2 = 0} J

cf. Godsil, Royle 2001
If v > 2r, then K(v,r) is a core.
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Another generalization: HGL,(F,)

Fs={0,1,2,1+1} =Fp+1Fp, 2=1+21=17 J

V(HGL,(F4)) = {invertible Hermitian n x n matrices over Fs}
E(HGL,(F4)) = {{A1, A2} : rank(A; — Ap) =1} J

Orel, E-JC 2015
If n> 2, then HGL,(F4) is a core.
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Yet another generalization: complementary prism I'T

(my former notation: I =T))
If [ is a graph with V(I') = {vy, ..., vo} let V(IT) = Wy U W,
Wi ={(wn,1),..., (vn, 1)} and Wh = {(v1,2),..., (vn,2)},

and let E(T'T) be:
{{(w,1), (v, )} : {u,v} € E(T)
0{{(u,2), (v.2)} : {u,v} € E(F)
0{{(u,1), (4,2)} 1w e V(D).

j
}
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Yet another generalization: T

Main question
When is I'T a core?

Other problems

o Aut(IT); related to

o self-complementary vertex-transitive graphs
e non-Cayley vertex-transitive graphs

e Hamiltonicity of I'T
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Already known results: diameter and spectrum

Lemma (Haynes, Henning, Slater, van der Merwe, 2007)

I'T is a connected graph with diam(I'T) < 3. Moreover,

diam(I'T) = 1 <= T = K,
diam(I'T) = 2 <= diam() = 2 = diam(T).
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Already known results: diameter and spectrum

Lemma (Haynes, Henning, Slater, van der Merwe, 2007)

I'T is a connected graph with diam(I'T) < 3. Moreover,

diam(I'T) = 1 <= T = K,
diam(I'T) = 2 <= diam() = 2 = diam(T).

Lemma (Cardoso, Carvalho, de Freitas, Vinagre, 2018)

If [ is a connected k-regular graph on n vertices with eigenvalues
k=MA12> Xy >--- > Ap, then the eigenvalues of I'T equal

n—1%/(n—1)2—4((n—k—1)k - 1)
2

—1i\/1+4()\,?+>\,-+1)
2

U 2<i<n

v,
10/17



Two special families of graphs: Cs(A), A(A)
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Two special families of graphs: Cs(A), A(A)

Aut(l) = {automorphisms of I'}
Aut(T) = {antimorphisms of ['} = {isomorphisms ™ — '}

N —

Definition

I is self-complementary (s.c.) if Aut(l) # 0

Examples of s.c. graphs
Cs, A-graph

A\

Cs(A) = constructed from Cs by replacing one vertex with graph A
A(N) = constructed from A by replacing the ‘top’ vertex with A
FACT: if Ais s.c., then G5(A) and A(A) are s.c.

A\
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Proposition (Orel 2021+)

If I = Gs(A), then Aut(I'T) is isomorphic to
e S5if [V(AN)| =1
o (Aut(l) UAut(T)) x Zy if Ais s.c. with [V(A)] # 1
o Aut(l') x Zy if Ais not s.c.
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Proposition (Orel 2021+)

If I = Gs(A), then Aut(I'T) is isomorphic to
e S5if [V(AN)| =1
o (Aut(l) UAut(T)) x Zy if Ais s.c. with [V(A)] # 1
o Aut(l') x Zy if Ais not s.c.

Proposition (Orel 2021+)
If I = A(A), then Aut(I'T) is isomorphic to

o (Aut(l)UAut(r)) x Zy if Ais s.c.
@ Aut(l') x Zy if Ais not s.c.
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Aut(rr)

If I = Cs(A), then Aut(I'T) is isomorphic to
o S5 if [V(N)|=1

o (Aut(l) U Aut(r)) x Zs if Ais s.c. with [V(A)] # 1

o Aut(l') x Zy if Ais not s.c.

Proposition (Orel 2021+)

If I = A(A), then Aut(I'T) is isomorphic to

o (Aut(l)UAut(r)) x Zy if Ais s.c.
@ Aut(l') x Zy if Ais not s.c.

Theorem (Orel 2021+)

If I 2 Cs(A), A(A), then Aut(I'T) is isomorphic to

o Aut(l) U Aut(lN) if T is s.c.
e Aut(l) if I' is not s.c.
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Aut(I'T) & corollaries

Corollary (Orel 2021+)

For each graph ', RG0! ¢ (1,2,4,12}.
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Aut(I'T) & corollaries

Corollary (Orel 2021+)

For each graph ', RG0! ¢ (1,2,4,12}.

Corollary (Orel 2021+)

I'T is vertex-transitive if and only if I is vertex-transitive and s.c.

Corollary (Orel 2021+)
If V()| > 1, then IT is not a Cayley graph.
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Aut(I'T) & corollaries; Hamiltonicity

It follows from a result of Muzychuk (Bull. London Math. Soc.
1999) that the orders of graphs I'T, which are vertex-transitive
(and non-Cayley) are precisely the values

2p(t -+ pg, where pi' = 1(mod 4) for all i

(p1,...,ps are distinct primes, «; > 1) or equivalently

2((2i)2+(2j+1)2> with ,j € {0,1,2,...} and (i,j) # (0,0).
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Aut(I'T) & corollaries; Hamiltonicity

It follows from a result of Muzychuk (Bull. London Math. Soc.
1999) that the orders of graphs I'T, which are vertex-transitive
(and non-Cayley) are precisely the values

2p(t -+ pg, where pi' = 1(mod 4) for all i

(p1,...,ps are distinct primes, «; > 1) or equivalently

2((2i)2+(2j+1)2> with ,j € {0,1,2,...} and (i,j) # (0,0).

T is NOT a lexicographic product of two graphs with at least 2
vertices.

Proposition (Orel 2021+)

If I is s.c. vertex-transitive graph on n > 5 vertices, then I is
Hamiltonian-connected.
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core(IT)

Lemma

If I 2 Kz, Kz, then there are only 5 possibilities for core(I'T):
© [T is a core
@ V/(core(IT)) € Wy and core(IT) = core(T)
© V/(core(I'T)) C W, and core(I'T) = core(T)
© complicated but highly constrained structure

© complicated but highly constrained structure

Example of possibility (4), (5): T = G+ Gs
' L,
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core(IT)

Corollary (Orel 2021+)

If T is (”51)—regu|ar, where |V/(I')| = n, then only possibilities (1),
(2), (3) can occur.
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core(IT)

Corollary (Orel 2021+)

If T is (”51)—regu|ar, where |V/(I')| = n, then only possibilities (1),

(2), (3) can occur.

The same result is true for each graph I with at least 4 vertices if
we assume that core(I'T) is regular.

Theorem (Orel 2021+)

If [ is strongly regular s.c. graph, then I'T is a core.

Theorem (Orel 2021+)

If T is s.c. vertex-transitive graph, and [ is either a core or its core
is complete, then T is a core.
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Thank you for your attention!

marko.orel@upr si



