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Definition:

A k-factor of a graph G is a k-regular spanning subgraph of G.

A k-factorisation of a graph G is a partition of the edge set E(G)

of G into k-factors.

Observe: if G admits a k-factorisation then G is regular
and k must divide the degree ∆.

Also, any graph that has a 1-factorisation must have an even
number of vertices.
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Example: a 1-Factorisation of K8p

F0 F1 F2 F3

F4 F5 F6
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1-Factorisation Conjecture (Dirac, 1950s?)

Suppose G is a regular graph of even order.
If ∆ >

1

2
|V (G)| then G has a 1-factorisation.

Theorem (Cariolaro and Hilton, 2009)

Suppose G is a regular graph of even order.
If ∆ >

1

6
(
√
57− 3)|V (G)| then G has a 1-factorisation.

Theorem (Walecki, 1890s)

For each m > 2, the complete graph K2m has a 1-factorisation.
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Theorem (Walecki, 1890s)

For each m > 2, the complete graph K2m has a 1-factorisation.

0
1

2

3

m− 2

m− 1m

m+ 1

2m− 4

2m− 3

2m− 2

∞

Slide 5 of 21



Theorem (Walecki, 1890s)

For each m > 2, the complete graph K2m has a 1-factorisation.
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Theorem (Walecki, 1890s)

For each m > 2, the complete graph K2m has a 1-factorisation.
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For each i = 1, 2, . . . , 2m− 2,
let Fi = F0 + i (mod 2m− 1).

Slide 5 of 21



Theorem (Walecki, 1890s)

For each m > 2, the complete graph K2m has a 1-factorisation.

F0
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m+ 1

2m− 4

2m− 3

2m− 2

∞

For each i = 1, 2, . . . , 2m− 2,
let Fi = F0 + i (mod 2m− 1).

This 1-factorisation
is denoted GK2m
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The 1-Factorisation of K8 known as GK8p

F0 F1 F2 F3

F4 F5 F6
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Definition:

A 1-factorisation of a graph G is called perfect if the union of
any two of its 1-factors yields a Hamilton cycle of G.

Every 1-factorisation of K4 is perfect.

Every 1-factorisation of K6 is perfect.

But not every 1-factorisation of K8 is perfect.
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Example: our first 1-factorisation of K8p

F0 F1 F2 F3

F4 F5 F6

Observe that F0 ∪ F1 yields a pair of 4-cycles
(actually, no Fi ∪ Fj is Hamiltonian for this 1-factorisation).
Hence this 1-factorisation is not perfect. Slide 8 of 21



GK8p

F0 F1 F2 F3

F4 F5 F6

Every pair of 1-factors yields an 8-cycle.
Hence this 1-factorisation is perfect.
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Perfect 1-Factorisation Conjecture (Kotzig, 1963)

For each m > 2, K2m admits a perfect 1-factorisation.

Theorem (Kotzig, 1963)

GK2m is perfect if and only if 2m− 1 is prime.

Theorem (Anderson, 1973)

If m is prime, then the 1-factorisation GA2m is perfect.
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Perfect 1-Factorisation Conjecture (Kotzig, 1963)

For each m > 2, K2m admits a perfect 1-factorisation.

Theorem (Kotzig, 1963)

GK2m is perfect if and only if 2m− 1 is prime.

Theorem (Anderson, 1973)

If m is prime, then the 1-factorisation GA2m is perfect.

Corollary

K2m has a perfect 1-factorisation if 2m is one of 4, 6, 8, 10, 12,
14, 18, 20, 22, 24, 26, 30, 32, 34, 38, 42, 44, 46, 48, 54, 58, 60,
62, 68, 72, 74, 80, 82, 84, 86, 90, 94, 98, etc.

This leaves unsettled: 16, 28, 36, 40, 50, 52, 56, 64, 66, 70, 76,
78, 88, 92, 96, 100, etc. Slide 10 of 21



Other known P1Fs of K2m for small m

16: Kotzig and Anderson, 1974
There are 3155 nonisomorphic P1Fs of K16 (Gill and
Wanless, 2020; Meszka, 2020)

28: Anderson, 1974

36: Seah and Stinson, 1988

40: Seah and Stinson, 1989

50: Ihrig, Seah and Stinson, 1987

52: Wolfe, 2009

This leaves unsettled: 56, 64, 66, 70, 76, 78, 88, 92, 96, 100, etc.
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Some other known P1Fs of K2m

126, 170, 244, 344, 730, 1332, 1370, 1850, 2198, 3126, 6860,
12168, 29792 have been known since at least 1991. For
references, see the survey by Seah in the Bulletin of the ICA,
volume 1 (1991).

Several instances where 2m = pt + 1 have been established.
The most recent examples (by Wanless, 2005) include 530,
2810, 4490, 6890, 11450, 11882, 15626, 22202, 24390, 24650,
26570, 29930, etc. For more details see Wanless’ website.

Also see the survey by Alex Rosa in Mathematica Slovaca,
volume 69 (2019).

Still unsettled: 56, 64, 66, 70, 76, 78, 88, 92, 96, 100, etc.
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Starters:

A starter in Z2t−1 consists of a set S of t− 1 disjoint unordered
pairs {xi, yi} ⊂ {0, 1, . . . , 2t− 2} such that for each
d ∈ {1, 2, . . . , 2t− 2}, one of the t− 1 pairs {xi, yi} satisfies
either xi − yi ≡ d (mod 2t− 1) or yi − xi ≡ d (mod 2t− 1).

Example:

For t = 7 consider the set S with these pairs:

{0, 1} produces d values of 1 and 12 (mod 13)

{4, 6} produces d values of 2 and 11 (mod 13)

{9, 12} produces d values of 3 and 10 (mod 13)

{7, 11} produces d values of 4 and 9 (mod 13)

{5, 10} produces d values of 5 and 8 (mod 13)

{2, 8} produces d values of 6 and 7 (mod 13)
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Starters:

Observe that a starter in Z2t−1 yields a near 1-factorisation of
K2t−1.

Example:

t = 7

0
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Starters:

Observe that a starter in Z2t−1 yields a near 1-factorisation of
K2t−1 and also a 1-factorisation of K2t.

Example:

t = 7
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Even Starters:

An even starter in Z2t−2 consists of a set E of t− 2 disjoint
unordered pairs {xi, yi} ⊂ {0, 1, . . . , 2t− 3} such that for each
d ∈ {1, 2, . . . , 2t− 3} \ {t− 1}, one of the t− 2 pairs {xi, yi}
satisfies either xi− yi ≡ d (mod 2t− 2) or yi−xi ≡ d (mod 2t− 2).

Example:

For t = 8 consider the set E with these pairs:

{10, 11} produces d values of 1 and 13 (mod 14)

{6, 8} produces d values of 2 and 12 (mod 14)

{2, 5} produces d values of 3 and 11 (mod 14)

{3, 7} produces d values of 4 and 10 (mod 14)

{4, 13} produces d values of 5 and 9 (mod 14)

{1, 9} produces d values of 6 and 8 (mod 14)
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Even Starters:

Observe that an even starter in Z2t−2 yields a 1-factorisation of
K2t

Example:

t = 8
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Even Starters:

Observe that an even starter in Z2t−2 yields a 1-factorisation of
K2t

Example:

t = 8
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Even Starters:

Observe that an even starter in Z2t−2 yields a 1-factorisation of
K2t when combined with this 1-factor.

Example:

t = 8
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Wolfe’s Approach for K4m

Begin by finding a pair of starters in Z2m−1.

Merge them to build an even starter in Z4m−2.

Each of the m− 1 pairs of each starter is given a high/low
designation as part of the construction.
So in fact 2m−1 even starters can be built from each pair of
starters.

Use the even starter to build a 1-factorisation for K4m.

Test the 1-factorisation for perfection.

Do this many times.
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Wolfe found a P1F for K52, published in 2009

He tested 7.494 billion pairs of starters in Z25.

Each pair produced 212 = 4096 even starters in Z50.

To find one that yielded a P1F of K52 took 10,000 hours of
computing time (i.e., about 166 days) on a cluster.

Real time was 5 days.

It had been about 20 years since the previous smallest open
case of the Perfect 1-Factorisation Conjecture was settled.
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A P1F for K56, published in 2019

Wolfe’s approach was used on a cluster with one director task
and 1023 worker tasks running in parallel.

Each worker built pairs of starters in Z27, merged them in
213 = 8192 ways, and tested the resulting 1-factorisations.

The worker that found a P1F had compared 7,730,443 pairs of
starters in a real time span of 33 days 6 hours.

The other 1022 workers were terminated after 43 days 9 hours.

Estimated total number of pairs of starters: 10.3 billion

Total computing time for workers: 1,064,700 hours
(i.e., a bit more than 121 years)
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A P1F for K56, published in 2019

The even starter of Z54 shown below yields a P1F for K56.

{36, 17}, {44, 12}, {39, 45}, {18, 35}, {8, 50}, {23, 15},
{42, 32}, {5, 46}, {19, 49}, {22, 37}, {10, 6}, {33, 30}, {3, 41},
{14, 21}, {48, 43}, {16, 52}, {25, 34}, {7, 38}, {11, 31}, {4, 2},
{29, 28}, {1, 27}, {0, 40}, {13, 24}, {51, 26}, {53, 20}

The smallest open case of the Perfect 1-Factorisation Conjecture
is now K64.
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Thank you.
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