New methods to attack the Buratti-Horak-Rosa Conjecture

John Schmitt

Middlebury College Vermont, USA jschmitt@middlebury.edu

Matt Ollis (Emerson College), Anita Pasotti (Università degli Studi di Brescia, Italy), Marco Pellegrini (Università Cattolica del Sacro Cuore, Italy)

Notation

- K_v denotes the complete graph whose vertex-set is $\{0, 1, \dots, v-1\}$ for any positive integer v.
- length $\ell(x, y)$ of an edge [x, y] of K_v as

$$\ell(x,y) = \min(|x-y|, v-|x-y|).$$

• Given a subgraph Γ of K_v , the list of edge-lengths of Γ is the list $\ell(\Gamma)$ of the lengths (taken with their respective multiplicities) of all the edges of Γ . We write $L = \{1^{a_1}, 2^{a_2}, \dots, t^{a_t}\}$ and $|L| = \sum a_i$

Buratti's Conjecture - a combinatorial disease

Conjecture (M. Buratti, 2007)

For any prime p = 2n + 1 and any list L of 2n positive integers not exceeding n, there exists a Hamiltonian path H of K_p with $\ell(H) = L$.

Buratti's Conjecture - a combinatorial disease

Conjecture (M. Buratti, 2007)

For any prime p = 2n + 1 and any list L of 2n positive integers not exceeding n, there exists a Hamiltonian path H of K_p with $\ell(H) = L$.

うして ふゆう ふほう ふほう うらう

For p = 7 and $L = \{1^2, 2^2, 3^2\}$, we have the Hamiltonian path H = [0, 1, 6, 2, 5, 3, 4].

Buratti's Conjecture - a combinatorial disease

Conjecture (M. Buratti, 2007)

For any prime p = 2n + 1 and any list L of 2n positive integers not exceeding n, there exists a Hamiltonian path H of K_p with $\ell(H) = L$.

For p = 7 and $L = \{1^2, 2^2, 3^2\}$, we have the Hamiltonian path H = [0, 1, 6, 2, 5, 3, 4].

- Easily seen to be true if *L* has just one edge-length
- If L has two distinct edge lengths, then solved by Dinitz and Janiszewski (2009) and Horak and Rosa (2009)
- Meszka showed true for all primes $p \leq 23$

Buratti-Horak-Rosa (BHR) Conjecture

Conjecture (P. Horak and A. Rosa)

Let L be a list of v - 1 positive integers not exceeding $\lfloor \frac{v}{2} \rfloor$. Then there exists a Hamiltonian path H of K_v such that $\ell(H) = L$ if, and only if, the following condition holds:

for any divisor d of v, the number of multiples of dappearing in L does not exceed v - d. (1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Buratti-Horak-Rosa (BHR) Conjecture

BHR Conjecture is true when:

- $v \leq 18$, Meszka by computer
- three distinct edge lengths of 1, 2, 3 by Capparelli and Del Fra (2010)
- three distinct edge lengths of 1, 2, 5 or 1, 3, 5 or 2, 3, 5 by Pasotti and Pellegrini (2014)
- three distinct edge lengths of 1, 2, 4 or 1, 2, 6 or 1, 2, 8 by Pasotti and Pellegrini (2014)
- $L = \{1^a, 2^b, t^c\}$ with t even and $a + b \ge t 1$ by Pasotti and Pellegrini (2014)
- 1,2,3,5 by Pasotti and Pellegrini (2014)

Cyclic realizations

A cyclic realization of a list L with v - 1 elements each from the set $\{1, \ldots, \lfloor \frac{v}{2} \rfloor\}$ is a Hamiltonian path $[x_0, x_1, \ldots, x_{v-1}]$ of K_v such that the list of edge-lengths $\{\ell(x_i, x_{i+1}) \mid i = 0, \ldots, v - 2\}$ equals L.

BHR(L) can be reformulated: every such a list L has a cyclic realization if and only if condition (1) is satisfied. For example, the path [0, 5, 11, 3, 9, 1, 8, 2, 10, 4, 12, 6, 7] is a cyclic realization of $\{1, 5^5, 6^6\}$.

Now, let *L* be a list with v - 1 positive integers not exceeding v - 1. A *linear realization* of *L*, denoted by *rL*, is a Hamiltonian path $[x_0, x_1, \ldots, x_{v-1}]$ of K_v such that $L = \{|x_i - x_{i+1}| \mid i = 0, \ldots, v - 2\}$. By *standard* linear realization, we mean a linear realization starting with 0. For instance, one can easily check that the path [0, 4, 1, 5, 2, 3, 7, 11, 8, 12, 9, 6, 10, 13, 17, 14, 18, 15, 16, 19] is a standard linear realization of $\{1^2, 3^9, 4^8\}$

Remark

Every linear realization of a list *L* can be viewed as a cyclic realization of a suitable list *L'* but not necessarily of the same list. For example, the path [0, 1, 2, 7, 3, 4, 5, 6] is a linear realization of $L = \{1^5, 4, 5\}$ and a cyclic realization of $L' = \{1^5, 3, 4\}$. If all the elements in the list are less than or equal to $\lfloor \frac{|L|+1}{2} \rfloor$, then every linear realization of *L* is also a cyclic realization of the same list *L*.

Let $\boldsymbol{g} = [g_1, g_2, \dots, g_v]$ be a linear realization of a list L. The *reverse*,

$$\operatorname{rev}(\boldsymbol{g}) = [g_v, g_{v-1}, \dots, g_1]$$

is also a linear realization of L, as is its complement,

$$\bar{g} = [v - 1 - g_1, v - 1 - g_2, \dots, v - 1 - g_v].$$

ション ふゆ アメリア メリア しょうめん

The *translation* of **g** by *a* is $\mathbf{g} + a = [g_1 + a, \dots, g_v + a]$, which has the same absolute differences as **g**.

Concatenation

Theorem

Let L_1 and L_2 be lists. If each of L_1 and L_2 has a standard linear realization, then $L = L_1 \cup L_2$ has a linear realization.

Proof.

Let $\mathbf{g} = [g_1, \ldots, g_m]$ and $\mathbf{h} = [h_1, \ldots, h_n]$ be linear realizations of L_1 and L_2 respectively with $g_1 = 0 = h_1$. Consider the sequence $\mathbf{g} \oplus \mathbf{h}$ obtained by concatenating $\operatorname{rev}(\bar{\mathbf{g}})$ and $[h_2, \ldots, h_n] + (m-1)$, which has length m + n - 1. The first m - 1 absolute differences give the elements of L_1 and, as the *m*th element of the sequence is $m - 1 = h_1 + m - 1$, the remaining n - 1 absolute differences give the elements of L_2 . Hence the sequence is a linear realization of L.

Insertion

Definition

Let x be a positive integer. We say that a linear realization rL of a list L is:

- of type A_x if the two vertices |L| x and |L| x + 1 are adjacent in rL;
- of type \mathcal{B}_x if the two vertices |L| x and |L| are adjacent in rL.

We define a function η_x acting on linear realizations of type \mathcal{A}_x as follows: the path $\eta_x(rL)$ is obtained from rL by inserting |L| + 1between the adjacent vertices |L| - x and |L| - x + 1. It is easy to see that $\eta_x(rL)$ is a linear realization of $(L \setminus \{1\}) \cup \{x, x + 1\}$. Analogously, we define a function μ_x acting on linear realizations of type \mathcal{B}_x in the following way: the path $\mu_x(rL)$ is obtained from rLby inserting |L| + 1 between the adjacent vertices |L| - x and |L|. Note that $\mu_x(rL)$ is a linear realization of $(L \setminus \{x\}) \cup \{1, x + 1\}$.

Our results

Theorem

[Ollis, Pasotti, Pellegrini, S. (2021)] Let $x \ge 3$ be an integer and let $L = \{1^a, x^b, (x+1)^c\}$ be an admissible list. Then BHR(L) holds in each of the following cases:

(1) x is odd and
$$a \ge \min\{3x - 3, b + 2x - 3\}$$
;

(2) x is odd,
$$a \ge 2x - 2$$
 and $c \ge \frac{4}{3}b$;

- (3) x is even and $a \ge \min\{3x 1, c + 2x 1\}$;
- (4) x is even, $a \ge 2x 1$ and $b \ge c$.

Our results

Theorem

[Ollis, Pasotti, Pellegrini, S. (2021)] Let $x \ge 2$ and $c \ge 1$. Let

$$L = \left\{1^{a}, 2^{b_2}, 4^{b_4}, 6^{b_6}, \dots, \ell^{b_\ell}, x^{c}\right\}$$

be an admissible list, where $\ell = 2 \lfloor \frac{x-1}{2} \rfloor$. Then BHR(L) holds in each of the following cases:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Our results

Theorem

[Ollis, Pasotti, Pellegrini, S. (2021)] Let $L = \{1^a, 2^b, 3^c, 4^d\}$ be an admissible list, where $c, d \ge 1$. Then BHR(L) holds for all $a \ge 3$ and all $b \ge 0$. Also, BHR(L) holds when a = 2 and $b \ge 1$.

Theorem

[Ollis, Pasotti, Pellegrini, S. (2021)] Let $L = \{1^{a_1}, \ldots, m^{a_m}\}$ be an admissible list. Then BHR(L) holds whenever $a_1 \ge a_2 \ge \cdots \ge a_m > 0$.

Thanks!

◆□ > < 個 > < E > < E > E の < @</p>