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The symmetric group as a metric space

Consider the symmetric group on n letters Sn with metric

dS(σ, θ) = n − F (σθ−1),

where F (ν) denotes the number of fixed points of ν.
It is clear that dS is not a shortest path distance since dS(σ, θ) = 1
is impossible.
Codes in (Sn, dS) were studied by Tarnanen in 1999 by using the

conjugacy association scheme of the group Sn.



Distance Degree Regular (DDR) spaces

A finite metric space (X , d) is distance degree regular (DDR) if
its distance degree sequence is the same for every point.
Assume (X , d) to be of diameter n.
In that case (X , d) is DDR iff for each 0 ≤ i ≤ n the graph
Γi = (X ,Ei ) which connects vertices at distance i in (X , d) is
regular of degree vi .
Thus E0 = {(x , x) | x ∈ X} is the diagonal of X 2.
Note that the Ei ’s form a partition of X 2.
Examples:

Distance regular graphs, Hamming graph, Johnson graph,...

Distance degree regular graphs, Cayley graphs,
vertex-transitive graphs



The symmetric group as a DDR space

Let wk denote the numbers of permutations on n letters with k
fixed points.
A generating function for these numbers (sometimes called
rencontres numbers ) is

n∑
k=0

wku
k = n!

n∑
j=0

(u − 1)j

j!
.

Thus, we have vi = n − wi .
(Sn, dS) is a DDR space that does not come from a distance
regular graph, not even from a DDR graph, because dS is not a
shortest path distance.



Frequencies in DDR spaces

If D is any non void subset of X we define its frequencies as

∀i ∈ [0..n], fi =
|D2 ∩ Ei |
|D|2

.

Thus f0 = 1
|D| , and

n∑
i=0

fi = 1.

Note also that if D = X , then fi = vi
|X | .

Example: If X = H(n, q) and D is a linear code then fi = Ai
|D| is

proportional to the weight distribution.



Designs in DDR spaces

The set D ⊆ X is a t-design for some integer t if

n∑
j=0

fj j
i =

n∑
j=0

vj
v
j i .

for i = 1, . . . , t.
Examples:

If X = H(n, q) then D is an Orthogonal Array of strength t

If X = J(v , k) then D is a t − (v , k , ∗) design



Designs in the symmetric group

Godsil proved in 1988:
If D ⊆ Sn is a t-transitive permutation group then it is a t-design
in (Sn, dS).
Partial converse in Conder-Godsil (1993):
If D ⊆ Sn is a t-design that is a subgroup of Sn, then it is a
t-transitive permutation group.
Examples of t-designs that are not subgroups in 3 slides.



Orthogonal polynomials

We define a scalar product on R[x ] attached to D by the relation

〈f , g〉D =
n∑

i=0

fi f (i)g(i).

Thus, in the special case of D = X we have

〈f , g〉X =
1

|X |

n∑
i=0

vi f (i)g(i).

We shall say that a sequence Φi (x) of polynomials of degree i is
orthonormal of size N + 1 if it satisfies

∀i , j ∈ [0..N], 〈Φi ,Φj〉X = δij ,

where N ≤ n.



Charlier polynomials and permutations

Let

Ck(x) = (−1)k +
k∑

i=1

(−1)k−i
(
k

i

)
x(x − 1) · · · (x − i + 1).

Thus, for concreteness,
C0(x) = 1, C1(x) = x − 1, C2(x) = x2 − 3x + 1.
The scalar product attached to the DDR space (Sn, dS) is then

〈f , g〉n =
1

n!

n∑
k=0

wn−k f (k)g(k).

Building on Tarnanen (1999) we can prove that

the reversed Charlier polynomials Ĉk(x) = Ck(n − x) satisfy the
orthogonality relation

〈Ĉr , Ĉs〉n = r !δrs ,

for r , s ≤ n/2.



Spectral characterization of designs

For a given D ⊆ X the dual frequencies are defined for
i = 0, 1, . . . ,N(X ) as

f̂i =
n∑

k=0

Φi (k)fk .

We recall the characterization of t-designs in terms of dual
frequencies obtained in reference below.
Let t be an integer ∈ [1..N(X )].
The set D ⊆ X is a t-design iff f̂i = 0 for i = 1, . . . , t.

M. Shi, O. Rioul, P. Solé,
Designs in finite metric spaces: a probabilistic approach,
Graphs and Combinatorics, special issue Bannai-Enomoto 75
(2021).



Spectral characterization of designs: t = 1

A subset D ⊆ Sn is a 1-design in (Sn, dS) iff
n∑

j=0
jfj = n − 1.

In particular, this condition is satisfied if we have n permutations at
pairwise distance n when f1 = f2 = · · · = fn−1 = 0, and fn = n−1

n .
The existence of n permutations of Sn at pairwise Hamming
distance n is trivially equivalent to the existence of a Latin
square of order n.
This is the case when Y is the group generated by a cycle of
length n. The Latin square is then the addition table of (Zn,+).



A non-group example of a 1-design

Here is a non-group example when n = 5, obtained from the
smallest Latin Square that is not the multiplication table of a
group.

Y = {12345, 24153, 35421, 41532, 53214},

when 24153 ◦ 35421 = 13542 /∈ Y .



Spectral characterization of designs: t = 2

A subset D ⊆ Sn is a 2-design in (Sn, dS) iff

n∑
j=0

jfj = n − 1,&
n∑

j=0

j2fj = 1 + (n − 1)2.

In particular, this condition is satisfied if we have n(n − 1)
permutations with frequencies f1 = f2 = · · · = fn−2 = 0, and
fn−1 = n−2

(n−1) , fn = 1
n .



A non-group example of a 2-design

A nongroup example of 2-design can be obtained by considering

{x 7→ ax3 + b | a, b ∈ F9, a 6= 0}.

The conditions of the criterion can be checked in Magma.



Main result

If D is a t-design in (Sn, dS), then

|D| ≥ n(n − 1) . . . (n − t + 1).

In case of equality fi = 0 for i ∈ [1..n − t].
In particular met for sharply transitive group of permutations, eg
for t = 2 projective planes .

Main open problem: Improve this lower bound when there is no
sharply t-transitive subgroup of Sn.
⇒ Can we prove that PG (2, 10) does not exist by linear

programming bounds?



Excerpt from Peter Cameron’s blog

Lower bounds are more problematic. There is a

machine invented by Philippe Delsarte for finding

lower bounds of sets in association schemes

satisfying certain t-design-like conditions. These

could in principle by applied to the conjugacy

class association scheme of the symmetric group. I

don’t know whether anyone has done this, and I rather

doubt that it will do better than the trivial lower

bound of n!/(n − t)! corresponding to sharply

transitive sets. The reason for my belief is that,

if there were a possibility of getting a better bound

this way, someone would no doubt have used it to

prove the non-existence of a sharply 2-transitive set

of permutations on {1, . . . , 10} (and hence of a

projective plane of order 10), for example.


