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The symmetric group as a metric space

Consider the symmetric group on n letters S, with metric
ds(c,0) = n— F(ob™1),

where F(v) denotes the number of fixed points of v.

It is clear that ds is not a shortest path distance since ds(o,6) =1
is impossible.

Codes in (Sp, ds) were studied by Tarnanen in 1999 by using the
conjugacy association scheme of the group S,.



Distance Degree Regular (DDR) spaces

A finite metric space (X, d) is distance degree regular (DDR) if
its distance degree sequence is the same for every point.

Assume (X, d) to be of diameter n.

In that case (X, d) is DDR iff for each 0 < i < n the graph

i = (X, E;) which connects vertices at distance i in (X, d) is
regular of degree v;.

Thus Ey = {(x,x) | x € X} is the diagonal of X2.

Note that the E;'s form a partition of X2.

Examples:

o Distance regular graphs, Hamming graph, Johnson graph,...

@ Distance degree regular graphs, Cayley graphs,
vertex-transitive graphs



‘ The symmetric group as a DDR space ‘

Let wy denote the numbers of permutations on n letters with k
fixed points.

A generating function for these numbers (sometimes called
rencontres numbers ) is

n n H

u—1)
E WkUk = nl E (JI)
k=0 Jj=0

Thus, we have v; = n — w;.

(Sn, ds) is a DDR space that does not come from a distance
regular graph, not even from a DDR graph, because ds is not a
shortest path distance.



‘ Frequencies in DDR spaces ‘

If D is any non void subset of X we define its frequencies as

. |D2ﬂE,'|
Vi e [0..[7], f, = W
Thus fo = ‘D‘,and Zf_l
Note also that if D X then f; = |X‘

Example: If X = H(n,q) and D is a linear code then f; = |’Z‘)"| is
proportional to the weight distribution.




‘ Designs in DDR spaces

The set D C X is a t-design for some integer t if

n ] n vi
D=2
j=0 j=0
fori=1,...,t.
Examples:
e If X = H(n, q) then D is an Orthogonal Array of strength t

o If X = J(v,k) then D is a t — (v, k,*) design



‘ Designs in the symmetric group ‘

Godsil
If D C S, is a t-transitive permutation group then it is a t-design
in (Sp, ds).

Partial converse in Conder-Godsil (1993):

If DC S, is a t-design that is a subgroup of S, then it is a
t-transitive permutation group.

Examples of t-designs that are not subgroups in 3 slides.




‘ Orthogonal polynomials ‘

We define a scalar product on R[x] attached to D by the relation

(f.g)p =Y fif(i)ali)
i=0

Thus, in the special case of D = X we have

el |X|ZV’

We shall say that a sequence ®;(x) of polynomials of degree i is
orthonormal of size N + 1 if it satisfies

\V/I',j € [ON], <¢,’,¢j>x = 5,’1',

where N < n.



‘ Charlier polynomials and permutations ‘

Let

Thus, for concreteness,
G(x)=1, G(x)=x—-1, G(x) =x*> -3x+ 1.
The scalar product attached to the DDR space (S, ds) is then

(F 80 = > wn_kF(K)a(k).
" k=0

Building on Tarnanen (1999) we can prove that

the reversed Charlier polynomials Ci(x) = Cx(n — x) satisfy the
orthogonality relation

<aaa>n = r!6r57

for r,s < n/2.



‘ Spectral characterization of designs ‘

For a given D C X the dual frequencies are defined for
i=0,1,...,N(X) as

We recall the characterization of t-designs in terms of dual
frequencies obtained in reference below.

Let t be an integer € [L..N(X)].

Theset D C X is a t-design iff i =0fori=1,...,t.

M. Shi, O. Rioul, P. Solé,

Designs in finite metric spaces: a probabilistic approach,
Graphs and Combinatorics, special issue Bannai-Enomoto 75
(2021).



Spectral characterization of designs: t =1

A subset D C S, is a 1-design in (Sp, ds) iff > jf=n—1.

Jj=0
In particular, this condition is satisfied if we have n permutations at
pairwise distance n when fi=fH=---=1f,_1=0,and f, = n—l

n
The existence of n permutations of S, at pairwise Hamming

distance n is trivially equivalent to the existence of a Latin
square of order n.

This is the case when Y is the group generated by a cycle of
length n. The Latin square is then the addition table of (Z,, +).



A non-group example of a 1-design

Here is a non-group example when n = 5, obtained from the
smallest Latin Square that is not the multiplication table of a

group.
Y = {12345,24153,35421,41532,53214},
when 24153 0 35421 = 13542 ¢ Y.



‘ Spectral characterization of designs: t =2 ‘

A subset D C S, is a 2-design in (S, ds) iff

Y jfi=n—1&) =1+ (n-1)
j=0 j=0

In particular, this condition is satisfied if we have n(n — 1)
permutations with frequencies fi=h=---=1f_»=0, and
foo1 = (n 1) f,=-=



‘ A non-group example of a 2-design ‘

A nongroup example of 2-design can be obtained by considering

{x—ax*+b|abecTy, a0}

The conditions of the criterion can be checked in Magma.



‘ Main result ‘

If D is a t-design in (Sp, ds), then
ID| >n(n—1)...(n—t+1).

In case of equality f; =0 for i € [1..n — t].
In particular met for sharply transitive group of permutations, eg
for t =2 projective planes .

Main open problem: Improve this lower bound when there is no
sharply t-transitive subgroup of S,.

= Can we prove that PG(2,10) does not exist by linear
programming bounds?



Excerpt from Peter Cameron’s blog

Lower bounds are more problematic. There is a
machine invented by Philippe Delsarte for finding
lower bounds of sets in association schemes
satisfying certain t-design-like conditions. These
could in principle by applied to the conjugacy
class association scheme of the symmetric group. I
don’t know whether anyone has done this, and I rather
doubt that it will do better than the trivial lower
bound of n!/(n—t)! corresponding to  sharply
transitive sets. The reason for my belief is that,
if there were a possibility of getting a better bound
this way, someone would no doubt have used it to
prove the non-existence of a sharply 2-transitive set
of permutations on {1,...,10} (and hence of a
projective plane of order 10), for example.



