Erdős-Ko-Rado, Cameron-Liebler and Hilton-Milner results in finite projective spaces

Leo Storme

Ghent University Dept. of Mathematics: Analysis, Logic and Discrete Mathematics 9000 Ghent Belgium

Combinatorial Designs and Codes, July 2021

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

OUTLINE

1 ALGEBRAIC COMBINATORICS

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

ALGEBRAIC COMBINATORICS

Algebraic combinatorics/Association schemes greatly help finite geometry.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

POINT/k-space incidence matrix

- Π_k = set of *k*-subspaces in PG(*n*, *q*), for $0 \le k \le n$.
- A = (a_{ij}) = incidence matrix of points and k-spaces of PG(n, q): rows of A are indexed by points p_i and columns by k-spaces PG(k, q)_i.

$$a_{ij} = \left\{ egin{array}{ll} 1 \Leftrightarrow p_i \in \operatorname{PG}(k,q)_j \ 0 \Leftrightarrow p_i
ot\in \operatorname{PG}(k,q)_j \end{array}
ight.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

DISTANCE-*i*-RELATION

•
$$R_i = \{(\pi, \pi') | \pi, \pi' \in \Pi_k, \dim(\pi \cap \pi') = k - i\}, 0 \le i \le k + 1.$$

- A_i = incidence matrix of relation R_i .
- Relations R₀, R₁,..., R_{k+1} = Grassmann association scheme J_q(n + 1, k + 1).

•
$$A_0 = I$$
 = identity matrix.

•
$$\sum_{i=0}^{k+1} A_i = J$$
 = all-one matrix.

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

DISTANCE-*i*-RELATION

- $R_i = \{(\pi, \pi') | \pi, \pi' \in \Pi_k, \dim(\pi \cap \pi') = k i\}, 0 \le i \le k + 1.$
- A_i = incidence matrix of relation R_i .
- Disjointness matrix A_{k+1} also denoted by *K*. Corresponding graph is a Kneser graph.
- Relations R_0, R_1, \dots, R_{k+1} = Grassmann association scheme $J_q(n+1, k+1)$.
- *j* = all-one vector.

DISTANCE-*i*-RELATION

- $R_i = \{(\pi, \pi') | \pi, \pi' \in \Pi_k, \dim(\pi \cap \pi') = k i\}, 0 \le i \le k + 1.$
- A_i = incidence matrix of relation R_i .
- Matrices *A_i* symmetrical: real eigenvalues and diagonalizable.

THEOREM

There is orthogonal decomposition $V_0 \perp V_1 \perp \cdots \perp V_{k+1}$ of \mathbb{R}^{\prod_k} in common eigenspaces of $A_0, A_1, \ldots, A_{k+1}$. Here $V_0 = \langle j \rangle$.

GAUSSIAN BINOMIAL COEFFICIENT

• Gaussian binomial coefficient $\left[\begin{smallmatrix} a \\ b \end{smallmatrix}
ight]_q$ for $a,b\in\mathbb{N}$ and prime power $q\geq 2$ =

$$\begin{bmatrix} a \\ b \end{bmatrix}_q = \frac{(q^a - 1) \cdots (q^{a-b+1} - 1)}{(q^b - 1) \cdots (q - 1)}.$$

- $\begin{bmatrix} a \\ b \end{bmatrix}_q$ = number of *b*-spaces of the vector space \mathbb{F}_q^a = number of (b-1)-spaces in the projective space PG(a-1,q).
- If field size q is clear from context, we write $\begin{bmatrix} a \\ b \end{bmatrix}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

EIGENVALUES

- $R_i = \{(\pi, \pi') | \pi, \pi' \in \Pi_k, \dim(\pi \cap \pi') = k i\}, 0 \le i \le k + 1.$
- A_i = incidence matrix of relation R_i .
- $\mathbb{R}^{\Pi_k} = V_0 \perp V_1 \perp \cdots \perp V_{k+1}.$

LEMMA (DELSARTE)

Consider $J_q(n+1, k+1)$. Eigenvalue P_{ji} of distance-i relation for V_j is:

$$P_{ji} = \sum_{s=\max(0,j-i)}^{\min(j,k+1-i)} (-1)^{j+s} {j \brack s} {n-k+s-j \brack n-k-i} {k+1-s \brack i} q^{j(i+s-j)+\frac{(j-s)(j-s-1)}{2}}.$$

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

FIRST OBSERVATION

- Π_k = set of *k*-subspaces in PG(*n*, *q*), for $0 \le k \le n$.
- A = (a_{ij}) = incidence matrix of points and k-spaces of PG(n, q): rows of A are indexed by points p_i and columns by k-spaces PG(k, q)_j.

$$a_{ij} = \left\{ egin{array}{ll} 1 \Leftrightarrow p_i \in \mathsf{PG}(k,q)_j \ 0 \Leftrightarrow p_i
ot\in \mathsf{PG}(k,q)_j \end{array}
ight.$$

Theorem

$$\mathsf{Im}(A^{\mathcal{T}}) = V_0 \perp V_1$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

VIVERSIT

EQUIVALENT DEFINITIONS

THEOREM (BLOKHUIS, DE BOECK, D'HAESELEER)

Let \mathcal{L} be set of k-spaces in $PG(n, q), n \ge 2k + 1$, with

characteristic vector χ , and x so that $|\mathcal{L}| = x \begin{bmatrix} n \\ k \end{bmatrix}$. Then

following properties are equivalent.

•
$$\chi \in \operatorname{Im}(A^T)$$
.

$$2 \ \chi \in (\ker(A))^{\perp}.$$

So For every k-space π , number of elements of \mathcal{L} disjoint from π is $(x - \chi(\pi)) {n-k-1 \brack k} q^{k^2+k}$.

EQUIVALENT DEFINITIONS

THEOREM (BLOKHUIS, DE BOECK, D'HAESELEER)

• Vector
$$v = \chi - x \frac{q^{k+1}-1}{q^{n+1}-1} j$$
 is a vector in V_1 .

$$2 \quad \chi \in V_0 \perp V_1.$$

So For given i ∈ {1,..., k + 1} and given k-space π, number of elements of L, meeting π in (k − i)-space is:

$$\begin{cases} \left((x-1)\frac{q^{k+1}-1}{q^{k-i+1}-1} + q^{i}\frac{q^{n-k}-1}{q^{i}-1} \right) q^{i(i-1)} \begin{bmatrix} n-k-1\\ i-1 \end{bmatrix} \begin{bmatrix} k\\ i \end{bmatrix} & \text{if } \pi \in \mathcal{L} \\ x \begin{bmatrix} n-k-1\\ i-1 \end{bmatrix} \begin{bmatrix} k+1\\ i \end{bmatrix} q^{i(i-1)} & \text{if } \pi \notin \mathcal{L} \end{cases}$$

• for every pair of conjugate switching sets \mathcal{R} and \mathcal{R}' , $|\mathcal{L} \cap \mathcal{R}| = |\mathcal{L} \cap \mathcal{R}'|.$

Leo Storme

Results in finite projective spaces

IVERSI GENT

EQUIVALENT DEFINITIONS

DEFINITION

k-spread of PG(n, q) is partitioning of PG(n, q) into *k*-spaces.

k-Spread in PG(n, q) only exists if (k + 1)|(n + 1).

THEOREM (BLOKHUIS, DE BOECK, D'HAESELEER)

If PG(n, q) has k-spread, then following properties are equivalent to the previous ones.

- $|\mathcal{L} \cap \mathcal{S}| = x$ for every regular k-spread \mathcal{S} in PG(n, q).
- ② $|\mathcal{L} \cap \mathcal{S}| = x$ for every *k*-spread *S* in PG(*n*, *q*).

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

From 2. to 3.

THEOREM

Let \mathcal{L} be set of k-spaces in PG(n, q), $n \ge 2k + 1$, with characteristic vector χ , and x so that $|\mathcal{L}| = x \begin{bmatrix} n \\ k \end{bmatrix}$. Then 2. implies 3.:

2.
$$\chi \in (\ker(A))^{\perp}$$
.

3. For every k-space π , number of elements of \mathcal{L} disjoint from π is $(x - \chi(\pi)) {n-k-1 \brack k} q^{k^2+k}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

PREPARATORY LEMMAS

Lemma

The number of k-spaces disjoint to a fixed k-space π in PG(*n*, *q*) equals $q^{k^2+2k+1} \begin{bmatrix} n-k \\ k+1 \end{bmatrix}$.

Lemma

Let $P \in PG(n, q) \setminus \pi$. The number of k-spaces through P disjoint to π in PG(n, q) equals $q^{k^2+k} {n-k-1 \brack k}$.

PREPARATORY LEMMAS

Let \mathcal{Z} be set of all *k*-subspaces in PG(*n*, *q*) disjoint from π , with characteristic vector $\chi_{\mathcal{Z}}$.

Lemma

Let $P \in PG(n, q) \setminus \pi$. The number of k-spaces through P disjoint to π in PG(n, q) equals $q^{k^2+k} {n-k-1 \brack k}$.

So

$$A\chi_{\mathcal{Z}} = q^{k^2+k} \begin{bmatrix} n-k-1\\k \end{bmatrix} (j-v_{\pi}).$$

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

PREPARATORY LEMMAS

Lemma

Let π be a k-dimensional subspace in PG(n, q) with χ_{π} the characteristic vector of the set { π }. Let \mathcal{Z} be the set of all k-subspaces in PG(n, q) disjoint from π with characteristic vector $\chi_{\mathcal{Z}}$, then

$$\chi_{\mathcal{Z}} - q^{k^2 + k} \begin{bmatrix} n - k - 1 \\ k \end{bmatrix} \left(\begin{bmatrix} n \\ k \end{bmatrix}^{-1} j - \chi_{\pi} \right) \in \ker(A).$$

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

From 2. to 3.

THEOREM

Let \mathcal{L} be set of k-spaces in PG(n, q), $n \ge 2k + 1$, with characteristic vector χ , and x so that $|\mathcal{L}| = x \begin{bmatrix} n \\ k \end{bmatrix}$. Then 2. implies 3.:

- 2. $\chi \in (\ker(A))^{\perp}$.
- 3. For every k-space π , the number of elements of \mathcal{L} disjoint from π is $(x \chi(\pi)) {n-k-1 \brack k} q^{k^2+k}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

PROOF: FROM 2. TO 3.

 $\chi \in (\ker(A))^{\perp}$, while

$$\chi_{\mathcal{Z}} - q^{k^2+k} \begin{bmatrix} n-k-1\\k \end{bmatrix} \left(\begin{bmatrix} n\\k \end{bmatrix}^{-1} j - \chi_{\pi} \right) \in \ker(A).$$

So

$$\chi \cdot \left(\chi_{\mathcal{Z}} - q^{k^2 + k} \begin{bmatrix} n - k - 1 \\ k \end{bmatrix} \left(\begin{bmatrix} n \\ k \end{bmatrix}^{-1} j - \chi_{\pi} \right) \right) = 0.$$

・ロト ・四ト ・ヨト ・ヨト

VIVERSITE GENT

æ

Examples of Cameron-Liebler sets Characterization results on Cameron-Liebler sets Hilton-Milner results

PROOF: FROM 2. TO 3.

$$\chi \cdot \chi_{\mathcal{Z}} - q^{k^2 + k} \begin{bmatrix} n - k - 1 \\ k \end{bmatrix} \left(\begin{bmatrix} n \\ k \end{bmatrix}^{-1} \chi \cdot j - \chi \cdot \chi_{\pi} \right) = 0.$$

$$\chi \cdot \chi_{\mathcal{Z}} = q^{k^2 + k} \begin{bmatrix} n - k - 1 \\ k \end{bmatrix} \left(\begin{bmatrix} n \\ k \end{bmatrix}^{-1} \chi \cdot j - \chi \cdot \chi_{\pi} \right).$$

$$|\mathcal{L} \cap \mathcal{Z}| = q^{k^2 + k} \begin{bmatrix} n - k - 1 \\ k \end{bmatrix} \left(\begin{bmatrix} n \\ k \end{bmatrix}^{-1} |\mathcal{L}| - \chi(\pi) \right).$$

$$|\mathcal{L} \cap \mathcal{Z}| = q^{k^2 + k} \begin{bmatrix} n - k - 1 \\ k \end{bmatrix} (x - \chi(\pi)).$$

æ

OUTLINE

2 EXAMPLES OF CAMERON-LIEBLER SETS

3 CHARACTERIZATION RESULTS ON CAMERON-LIEBLER SETS

EXAMPLES OF CAMERON-LIEBLER SETS

Example 1: All *k*-spaces through point P (= point-pencil) = Cameron-Liebler set with parameter x = 1.

EXAMPLES OF CAMERON-LIEBLER SETS

THEOREM

All k-spaces through point P (= point-pencil) = Cameron-Liebler set with parameter x = 1.

Proof: All *k*-spaces through point *P* = row of *A*.

EXAMPLES OF CAMERON-LIEBLER SETS

Theorem

All k-spaces in hyperplane π = Cameron-Liebler set with parameter $x = \frac{q^{n-k}-1}{q^{k+1}-1}$.

Proof: Equivalent definition 3.

3. For every *k*-space π , number of elements of \mathcal{L} disjoint from π is $(x - \chi(\pi)) {n-k-1 \choose k} q^{k^2+k}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

EXAMPLES OF CAMERON-LIEBLER SETS

- All *k*-spaces in hyperplane π = Cameron-Liebler set with parameter $x = \frac{q^{n-k}-1}{q^{k+1}-1}$
- **Remark:** $x = \frac{q^{n-k}-1}{q^{k+1}-1} \in \mathbb{Q} \setminus \mathbb{N}$ when $(k+1) \not| (n+1)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

OUTLINE

2 EXAMPLES OF CAMERON-LIEBLER SETS

3 CHARACTERIZATION RESULTS ON CAMERON-LIEBLER SETS

Leo Storme Results in finite projective spaces

CHARACTERIZATION RESULTS

Lemma

There are no Cameron-Liebler sets of k-spaces in PG(n, q) with parameter $x \in]0, 1[$.

Proof:

- Let \mathcal{L} = Cameron-Liebler set of *k*-spaces with parameter $x \in]0, 1[$.
- Then \mathcal{L} is not empty set, so suppose $\pi \in \mathcal{L}$. By definition 3:
- 3. For every *k*-space π , number of elements of \mathcal{L} disjoint from π is $(x \chi(\pi)) {n-k-1 \brack k} q^{k^2+k}$.
 - Number of k-spaces of L skew to π is negative.
 (Contradiction)

CHARACTERIZATION RESULT FOR x = 1

Lemma

Let \mathcal{L} = Cameron-Liebler set of k-spaces with parameter x = 1, then every two k-spaces in \mathcal{L} intersect in at least one point.

Proof: Definition 3.

- 3. For every *k*-space π , number of elements of \mathcal{L} disjoint from π is $(x \chi(\pi)) {n-k-1 \brack k} q^{k^2+k}$.
 - (x = 1) For every k-space π ∈ L, number of elements of L disjoint from π is (1 − 1) [^{n-k-1}]_k q^{k²+k} = 0.

Conclusion: Cameron-Liebler set of *k*-spaces with parameter x = 1 is set of pairwise intersecting *k*-spaces. Link to Erdős-Ko-Rado results.

ERDŐS-KO-RADO PROBLEM

Problem: What are largest sets of *k*-sets in *n*-set, pairwise intersecting in at least one element?

THEOREM (ERDŐS-KO-RADO)

If S is set of k-sets in n-set Ω , with $2k \le n$, pairwise intersecting in at least one element, then $|S| \le \binom{n-1}{k-1}$. If $2k + 1 \le n$, then equality only holds if S consists of all k-sets through fixed element of Ω .

n = 2k: If n = 2k, other sets with equality: all *k*-sets in fixed subset of size n - 1 = 2k - 1 of Ω .

ERDŐS-KO-RADO RESULTS

THEOREM (GODSIL AND NEWMAN)

If \mathcal{L} is set of pairwise intersecting k-spaces in PG(n, q) with $n \ge 2k + 1$, then $|\mathcal{L}| \le {n \choose k}$, and equality holds if and only if \mathcal{L} is point-pencil, or n = 2k + 1 and \mathcal{L} consists of all k-spaces in hyperplane of PG(2k + 1, q).

Theorem

Let \mathcal{L} be Cameron-Liebler set of k-spaces with parameter x = 1in PG(n,q), $n \ge 2k + 1$. Then \mathcal{L} is point-pencil or n = 2k + 1and \mathcal{L} is set of all k-spaces in hyperplane of PG(2k + 1,q).

Proof: Immediate consequence of Erdős-Ko-Rado result.

CHARACTERIZATION RESULTS

THEOREM (BLOKHUIS, DE BOECK, D'HAESELEER)

There are no Cameron-Liebler sets of k-spaces in PG(n, q), $n \ge 3k + 2$, with parameter $2 \le x \le \frac{1}{\sqrt[8]{2}}q^{\frac{n}{2} - \frac{k^2}{4} - \frac{3k}{4} - \frac{3}{2}}(q-1)^{\frac{k^2}{4} - \frac{k}{4} + \frac{1}{2}}\sqrt{q^2 + q + 1}.$

Notation:

•
$$f(n,q,k) = \frac{1}{\sqrt[8]{2}} q^{\frac{n}{2} - \frac{k^2}{4} - \frac{3k}{4} - \frac{3}{2}} (q-1)^{\frac{k^2}{4} - \frac{k}{4} + \frac{1}{2}} \sqrt{q^2 + q + 1}$$

•
$$f(q, n, k) \in \mathcal{O}(\sqrt{q^{n-2k}}) = \mathcal{O}(q^{n/2-k}).$$

 All k-spaces in hyperplane of PG(n, q) = Cameron-Liebler set of k-spaces with parameter x = q^{n-k}−1/(q^{k+1}−1) ∈ O(q^{n−2k−1}).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

CHARACTERIZATION RESULTS

Lemma

Let \mathcal{L} be Cameron-Liebler set of k-spaces in PG(n, q) with parameter x.

• For every $\pi \in \mathcal{L}$, there are

$$s_1 = x \begin{bmatrix} n \\ k \end{bmatrix} - (x-1) \begin{bmatrix} n-k-1 \\ k \end{bmatrix} q^{k^2+k}$$

elements of \mathcal{L} meeting π .

For skew π, π' ∈ L, there are d₂ subspaces in L that are skew to both π and π', and there are s₂ subspaces in L that meet both π and π'.

Complicated formulas for d_2 and s_2 : upper bounds d'_2 and s'_2 are used

CHARACTERIZATION RESULTS

Lemma

Let c, n, k be nonnegative integers with n > 2k + 1 and

$$(c+1)s_1-\binom{c+1}{2}s_2'>x\begin{bmatrix}n\\k\end{bmatrix}$$

then no Cameron-Liebler set of k-spaces in PG(n, q) with parameter x contains c + 1 mutually skew subspaces.

Proof:

- Assume \mathcal{L} = Cameron-Liebler set of *k*-spaces with parameter *x* that contains c + 1 mutually disjoint subspaces $\pi_0, \pi_1, \dots, \pi_c$.
- Previous lemma shows that π_i meets at least $s_1 is_2$ elements of \mathcal{L} that are skew to $\pi_0, \pi_1, \ldots, \pi_i = 1$.

Results in finite projective spaces

CHARACTERIZATION RESULTS

- Previous lemma shows that π_i meets at least $s_1 is_2$ elements of \mathcal{L} that are skew to $\pi_0, \pi_1, \ldots, \pi_{i-1}$.
- Hence

 $x \begin{bmatrix} n \\ k \end{bmatrix} = |\mathcal{L}| \ge (c+1)s_1 - \sum_{i=0}^c is_2 \ge (c+1)s_1 - \sum_{i=0}^c is_2'$ which contradicts the assumption.

Lemma

Let c, n, k be nonnegative integers with n > 2k + 1 and

$$(c+1)s_1 - {\binom{c+1}{2}}s'_2 > x {\binom{n}{k}},$$

then no Cameron-Liebler set of k-spaces in PG(n, q) with parameter x contains c + 1 mutually skew subspaces.

CHARACTERIZATION RESULTS

Lemma

Let \mathcal{L} be a Cameron-Liebler set of k-spaces in PG(n, q), $n \ge 3k + 2$, with parameter $2 \le x \le f(q, n, k)$, then \mathcal{L} cannot contain x + 1 mutually disjoint k-spaces.

CHARACTERIZATION RESULTS

THEOREM (BLOKHUIS, BROUWER, CHOWDHURY, FRANKL, Mussche, Patkós, Szőnyi)

Let $k \ge 1$ be an integer. If $q \ge 3$ and $n \ge 2k + 2$, or if q = 2 and $n \ge 2k + 3$, then any family \mathcal{F} of pairwise intersecting *k*-subspaces of PG(*n*, *q*), with $\cap_{F \in \mathcal{F}} F = \emptyset$ has size at most ${n \brack k} - q^{k^2+k} {n-k-1 \brack k} + q^{k+1}$.

CHARACTERIZATION RESULTS

THEOREM (BLOKHUIS, DE BOECK, D'HAESELEER)

There are no Cameron-Liebler sets of k-spaces in PG(n, q), $n \ge 3k + 2$, with parameter $2 \le x \le \frac{1}{\sqrt[3]{2}}q^{\frac{n}{2} - \frac{k^2}{4} - \frac{3k}{4} - \frac{3}{2}}(q-1)^{\frac{k^2}{4} - \frac{k}{4} + \frac{1}{2}}\sqrt{q^2 + q + 1}.$

Proof:

- Such a Cameron-Liebler set of k-spaces would be union of x pairwise disjoint point-pencils.
- False for $x \ge 2$.

・ロト ・回 ト ・ヨト ・ヨト

OUTLINE

- 2 EXAMPLES OF CAMERON-LIEBLER SETS
- 3 CHARACTERIZATION RESULTS ON CAMERON-LIEBLER SETS

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ERDŐS-KO-RADO PROBLEM

Problem: What are largest sets of *k*-sets in *n*-set, pairwise intersecting in at least one element?

THEOREM (ERDŐS-KO-RADO)

If S is set of k-sets in n-set Ω , with $2k \le n$, pairwise intersecting in at least one element, then $|S| \le \binom{n-1}{k-1}$. If $2k + 1 \le n$, then equality only holds if S consists of all k-sets through fixed element of Ω .

n = 2k: If n = 2k, other sets with equality: all *k*-sets in fixed subset of size n - 1 = 2k - 1 of Ω .

ERDŐS-KO-RADO RESULTS

THEOREM (GODSIL AND NEWMAN)

If \mathcal{L} is set of pairwise intersecting k-spaces in PG(n, q) with $n \ge 2k + 1$, then $|\mathcal{L}| \le {n \choose k}$, and equality holds if and only if \mathcal{L} is point-pencil, or n = 2k + 1 and \mathcal{L} consists of all k-spaces in hyperplane of PG(2k + 1, q).

HILTON-MILNER RESULTS

THEOREM (HILTON AND MILNER)

Let \mathcal{F} be set of k-sets in n-set Ω , with $k \ge 2$, $n \ge 2k + 1$, with no element belonging to all the k-sets in \mathcal{F} . Then

$$|\mathcal{F}| \leq \left(egin{array}{c} n-1 \\ k-1 \end{array}
ight) - \left(egin{array}{c} n-k-1 \\ k-1 \end{array}
ight) + 1.$$

Equality occurs if and only if

•
$$\mathcal{F} = \{F\} \cup \{G \in \begin{pmatrix} \Omega \\ k \end{pmatrix} : x \in G, F \cap G \neq \emptyset\}$$
 for some fixed
k-set *F* and fixed $x \in \Omega \setminus F$.

•
$$\mathcal{F} = \{F \in \begin{pmatrix} \Omega \\ 3 \end{pmatrix} : |F \cap S| \ge 2\}$$
 for some fixed 3-set S if $k = 3$.

GENT

CHARACTERIZATION RESULTS

THEOREM (BLOKHUIS, BROUWER, CHOWDHURY, FRANKL, MUSSCHE, PATKÓS, SZŐNYI)

Let $k \ge 1$ be an integer. If $q \ge 3$ and $n \ge 2k + 2$, or if q = 2 and $n \ge 2k + 3$, then any family \mathcal{F} of pairwise intersecting *k*-subspaces of PG(*n*, *q*), with $\cap_{F \in \mathcal{F}} F = \emptyset$ has size at most ${n \brack k} - q^{k^2+k} {n-k-1 \brack k} + q^{k+1}$.

FUTURE RESEARCH

- Erdős-Ko-Rado problems investigated in many settings: sets, vector spaces, polar spaces, designs, set partitions, finite groups, buildings, graphs, integer sequences, ...,
- Keyword: 158 articles in mathscinet.
- Chris Godsil and Karen Meagher, *Erdős-Ko-Rado* theorems: algebraic approaches. Cambridge Studies in Advanced Mathematics, 149. Cambridge University Press, Cambridge, 2016.

FUTURE RESEARCH

- Cameron-Liebler problems investigated in: sets, vector spaces, polar spaces, ...,
- Keyword: 29 articles in mathscinet.
- A.L. Gavrilyuk and I. Yu Mogilnykh, Cameron-Liebler line classes in PG(*n*,4). *Des. Codes Cryptogr.* **73** (2014), no. 3, 969–982.
- A.L. Gavrilyuk and K. Metsch, A modular equality for Cameron-Liebler line classes. *J. Combin. Theory Ser. A* 127 (2014), 224–242.

FUTURE RESEARCH ON CAMERON-LIEBLER SETS

- Links to computer science: Boolean degree one functions.
- Y. Filmus and F. Ihringer, Boolean constant degree functions on the slice are juntas. *Discrete Math.* 342 (2019), no. 12, 111614, 7 pp.
 Y. Filmus and F. Ihringer, Boolean degree 1 functions on some classical association schemes. *J. Combin. Theory Ser. A* 162 (2019), 241–270.

POINT/*k*-space incidence matrix

 $A = (a_{ij})$ = incidence matrix of points and *k*-spaces of PG(*n*, *q*): rows indexed by points p_i and columns by *k*-spaces PG(*k*, *q*)_{*j*}.

$$a_{ij} = \left\{ egin{array}{ll} 1 \Leftrightarrow p_i \in \mathsf{PG}(k,q)_j \ 0 \Leftrightarrow p_i
ot\in \mathsf{PG}(k,q)_j \end{array}
ight.$$

Theorem

Let \mathcal{L} be set of k-spaces in PG(n, q), $n \ge 2k + 1$, with characteristic vector χ , and x so that $|\mathcal{L}| = x \begin{bmatrix} n \\ k \end{bmatrix}$. Then

following properties are equivalent.

• \mathcal{L} is a Cameron-Liebler k-set in PG(n, q) with parameter x.

- $2 \ \chi \in \operatorname{Im}(A^{T}).$
- 3 $\chi \in (\ker(A))^{\perp}$.

FUTURE RESEARCH

 Hilton-Milner problems investigated in: sets, vector spaces, attenuated spaces, weak compositions, set partitions, signed sets, ..., Keyword: 12 articles in mathscinet.

Thank you very much for your attention!

・ロト ・部 ト ・ヨト ・ヨト