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Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v , k, λ, µ)-partial difference set
(PDS)

if

• |G | = v ,

• |S | = k ,

• if 1 6= g ∈ G and g ∈ S , then g can be written as the product ab−1,
where a, b ∈ S , exactly λ different ways, and

• if 1 6= g ∈ G and g /∈ S , then g can be written as the product ab−1,
where a, b ∈ S , exactly µ different ways.

Why partial difference set? Originally interest was in abelian groups, and
the operation was addition.
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Small example

Example

• G : additive group of GF(13)

• S = {1, 3, 4, 9, 10, 12}

For elements in S :

• 1 = 4− 3 = 10− 9

• 3 = 4− 1 = 12− 9

• 4 = 3− 12 = 1− 10

• 9 = 12− 3 = 10− 1

• 10 = 1− 4 = 9− 12

• 12 = 3− 4 = 9− 10
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Small example

Example

• G : additive group of GF(13)

• S = {1, 3, 4, 9, 10, 12}

For nonidentity elements not in S :

• 2 = 3− 1 = 12− 10 = 1− 12

• 5 = 9− 4 = 1− 9 = 4− 12

• 6 = 9− 3 = 10− 4 = 3− 10

• 7 = 3− 9 = 4− 10 = 10− 3

• 8 = 4− 9 = 9− 1 = 12− 4

• 11 = 1− 3 = 10− 12 = 12− 1
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Small example

Example

• G : additive group of GF(13)

• S = {1, 3, 4, 9, 10, 12}

For nonidentity elements not in S :

• 2 = 3− 1 = 12− 10 = 1− 12

• 5 = 9− 4 = 1− 9 = 4− 12

• 6 = 9− 3 = 10− 4 = 3− 10

• 7 = 3− 9 = 4− 10 = 10− 3

• 8 = 4− 9 = 9− 1 = 12− 4

• 11 = 1− 3 = 10− 12 = 12− 1

S is a (13, 6, 2, 3)-PDS.
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Small example, continued

Example

• G : additive group of of GF(13)

• S = {1, 3, 4, 9, 10, 12}
• S is a (13, 6, 2, 3)-PDS with 0 /∈ S , S = −S
• Cay(G ,S): undirected (13, 6, 2, 3)-strongly regular Cayley graph.
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Equivalent concepts

Definition

A (v , k , λ, µ)-PDS is called regular if 1 /∈ S and S = S−1.

Proposition

G: finite group

S: regular (v , k, λ, µ)-PDS ⇔ Cay(G ,S): (v , k, λ, µ)-SRG.

Definition

The group G acts regularly on the set Ω if G acts transitively and
fixed-point freely (other than the identity).

SO: regular (v , k , λ, µ)-PDS in G ↔ G acts regularly on vertices of
(v , k , λ, µ)-SRG
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What’s known?

• Extensive knowledge for abelian groups (see Ma [Ma94])

• Very few known for nonabelian groups!

• Smith [Smi95]: regular (4t2, 2t2 − t, t2 − t, t2 − t)-PDS’s in certain
nonabelian groups

• Kantor [Kan86], Ghinelli [Ghi12]: regular
(q3, q2 + q − 2, q − 2, q + 2)-PDS in Heisenberg group of order q3 (q
odd prime power)

• S. [Swa15]: regular (p3, p2 + p − 2, p − 2, p + 2)-PDS S of
extraspecial group of order p3, exponent p2 (p odd)

• Feng, He, Chen [FHC20]: PDS’s of exponent 4, 8, and 16 and of
nilpotency class 2, 3, 4, and 6
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Generalized Quadrangles

A generalized quadrangle (GQ) is a point-line incidence geometry.

A GQ with order (s, t) has s + 1 points on each line and t + 1 lines
incident with each point.

generalized quadrangle of order (s, t) →
((s + 1)(st + 1), s(t + 1), s − 1, t + 1)-SRG
vertices ↔ points of GQ

• Kantor [Kan86], Ghinelli [Ghi12]: regular
(q3, q2 + q − 2, q − 2, q + 2)-PDS in Heisenberg group of order q3 (q
odd prime power) corresponding to a GQ

• Feng, Li [FL21]: Finite groups acting regularly on points of a finite
generalized quadrangle can have unbounded nilpotency class(!!!)
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Motivation: Yoshiara’s Restrictions

Theorem (Yoshiara [Yos07])

There does not exist a generalized quadrangle of order (t2, t) with a group
of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

Lemma (Yoshiara [Yos07])

G: acts regularly on points of GQ of order (s, t)
x: nonidentity element of G
d1(x): number of points sent to collinear points by x
∆: “S ∪ {1}” (PDS + identity)

• d1(x) = |xG ∩∆||CG (x)| ≡ (s + 1)(t + 1) (mod s + t);

• gcd(s, t) > 1⇒ xG ∩∆ 6= ∅.
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Benson’s Lemma and its generalization

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t)

d0(x): number of points fixed by x
d1(x): number of points sent to collinear points by x
Then,

(t + 1)d0(x) + d1(x) ≡ (s + 1)(t + 1) (mod s + t).

Lemma (De Winter, Kamischke, Wang [DWKW16])

x: nonidentity automorphism of (v , k , λ, µ)-SRG with integer eigenvalues
k > ν2 > ν3
d0(x): number of vertices fixed by x
d1(x): number of vertices sent to adjacent vertices by x
Then,

−ν3d0(x) + d1(x) ≡ µ− ν3(ν2 + 1) (mod (ν2 − ν3)).
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(t + 1)d0(x) + d1(x) ≡ (s + 1)(t + 1) (mod s + t).

Lemma (De Winter, Kamischke, Wang [DWKW16])

x: nonidentity automorphism of (v , k , λ, µ)-SRG with integer eigenvalues
k > ν2 > ν3
d0(x): number of vertices fixed by x
d1(x): number of vertices sent to adjacent vertices by x
Then,

−ν3d0(x) + d1(x) ≡ µ− ν3(ν2 + 1) (mod (ν2 − ν3)).
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New Results

Lemma (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

d1(x): number of vertices sent to adjacent vertices by x

∆: “S ∪ {1}” (PDS + identity)

Then,

• d1(x) = |xG ∩∆||CG (x)| ≡ µ− ν3(ν2 + 1) (mod ν2 − ν3);

• If (ν2 − ν3) does not divide µ− ν3(ν2 + 1), then xG ∩∆ 6= ∅.

Eric Swartz (W&M) Restrictions on PDS’s July 16, 2021 10 / 21



New Results

Lemma (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

d1(x): number of vertices sent to adjacent vertices by x

∆: “S ∪ {1}” (PDS + identity)

Then,

• d1(x) = |xG ∩∆||CG (x)| ≡ µ− ν3(ν2 + 1) (mod ν2 − ν3);

• If (ν2 − ν3) does not divide µ− ν3(ν2 + 1), then xG ∩∆ 6= ∅.

Eric Swartz (W&M) Restrictions on PDS’s July 16, 2021 10 / 21



New Results

Lemma (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

d1(x): number of vertices sent to adjacent vertices by x

∆: “S ∪ {1}” (PDS + identity)

Then,

• d1(x) = |xG ∩∆||CG (x)| ≡ µ− ν3(ν2 + 1) (mod ν2 − ν3);

• If (ν2 − ν3) does not divide µ− ν3(ν2 + 1), then xG ∩∆ 6= ∅.

Eric Swartz (W&M) Restrictions on PDS’s July 16, 2021 10 / 21



New Results

Lemma (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

d1(x): number of vertices sent to adjacent vertices by x

∆: “S ∪ {1}” (PDS + identity)

Then,

• d1(x) = |xG ∩∆||CG (x)| ≡ µ− ν3(ν2 + 1) (mod ν2 − ν3);

• If (ν2 − ν3) does not divide µ− ν3(ν2 + 1), then xG ∩∆ 6= ∅.

Eric Swartz (W&M) Restrictions on PDS’s July 16, 2021 10 / 21



New Results

Lemma (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

d1(x): number of vertices sent to adjacent vertices by x

∆: “S ∪ {1}” (PDS + identity)

Then,

• d1(x) = |xG ∩∆||CG (x)| ≡ µ− ν3(ν2 + 1) (mod ν2 − ν3);

• If (ν2 − ν3) does not divide µ− ν3(ν2 + 1), then xG ∩∆ 6= ∅.

Eric Swartz (W&M) Restrictions on PDS’s July 16, 2021 10 / 21



New Results

Lemma (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

d1(x): number of vertices sent to adjacent vertices by x

∆: “S ∪ {1}” (PDS + identity)

Then,

• d1(x) = |xG ∩∆||CG (x)| ≡ µ− ν3(ν2 + 1) (mod ν2 − ν3);

• If (ν2 − ν3) does not divide µ− ν3(ν2 + 1), then xG ∩∆ 6= ∅.

Eric Swartz (W&M) Restrictions on PDS’s July 16, 2021 10 / 21



New Results

Lemma (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

d1(x): number of vertices sent to adjacent vertices by x

∆: “S ∪ {1}” (PDS + identity)

Then,

• d1(x) = |xG ∩∆||CG (x)| ≡ µ− ν3(ν2 + 1) (mod ν2 − ν3);

• If (ν2 − ν3) does not divide µ− ν3(ν2 + 1), then xG ∩∆ 6= ∅.

Eric Swartz (W&M) Restrictions on PDS’s July 16, 2021 10 / 21



New Results, Cont.

Proposition (S., Tauscheck [ST21])

Γ: (v , k , λ, µ)-SRG with integer eigenvalues k > ν2 > ν3

G acts regularly on vertices of Γ ↔ ∃ a regular (v , k , λ, µ)-PDS in G

x: nonidentity element of G

∆: “S ∪ {1}” (PDS + identity)

If ν2 − ν3 divides neither µ− ν3(ν2 + 1) nor v − 2k + λ− ν3(ν2 + 1), then
xG ∩∆ 6= ∅ and xG ∩∆c 6= ∅.

Proof.

Apply the previous lemma to both Γ and its complement Γc !
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New Results, Cont.

Let

ν2 =
1

2

(
λ− µ+

√
Λ
)
, ν3 =

1

2

(
λ− µ−

√
Λ
)
∈ Z,

where Λ = (λ− µ)2 + 4(k − µ) = (ν2 − ν3)2.

Corollary (S. Tauscheck [ST21])

Suppose

• |G | = v;

• G has a nontrivial center (EX: G is a p-group);

• ν2 − ν3 divides neither of µ− ν3(ν2 + 1) or v − 2k + λ− ν3(ν2 + 1).

Then, G does not contain a regular (v , k , λ, µ)-PDS.
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Parameters Ruled Out

v k λ µ ν2 ν3 ν2 − ν3 µ− ν3(ν2 + 1)

28 12 6 4 4 -2 6 14
15 6 10 1 -5 6 20

63 30 13 15 3 -5 8 35
32 16 16 4 -4 8 36

88 27 6 9 3 -6 9 33
60 41 40 5 -4 9 64

105 26 13 4 11 -2 13 28
78 55 66 1 -12 13 90

105 32 4 12 2 -10 12 42
72 51 45 9 -3 12 75

105 52 21 30 2 -11 13 63
52 29 22 10 -3 13 55

117 36 15 9 9 -3 12 39
80 52 60 2 -10 12 90

176 25 0 4 3 -7 10 32
150 128 126 6 -4 10 154

Table: Parameters with v 6 300 ruled out
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Parameters Ruled Out, Cont.

v k λ µ ν2 ν3 ν2 − ν3 µ− ν3(ν2 + 1)

176 45 18 9 12 -3 15 48
130 93 104 2 -13 15 143

176 70 18 34 2 -18 20 88
105 68 54 17 -3 20 108

176 70 24 30 4 -10 14 80
105 64 60 9 -5 14 110

189 48 12 12 6 -6 12 54
140 103 105 5 -7 12 147

195 96 46 48 6 -8 14 104
98 49 49 7 -7 14 105

208 75 30 25 10 -5 15 80
132 81 88 4 -11 15 143

208 81 24 36 3 -15 18 88
126 80 70 14 -4 18 130

225 96 51 33 21 -3 24 99
128 64 84 2 -22 24 150

Table: Parameters with v 6 300 ruled out
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Parameters Ruled Out, Cont.

v k λ µ ν2 ν3 ν2 − ν3 µ− ν3(ν2 + 1)

231 30 9 3 9 -3 12 33
200 172 180 2 -10 12 210

231 40 20 4 18 -2 20 42
190 153 171 1 -19 20 209

231 90 33 36 6 -9 15 99
140 85 84 8 -7 15 147

232 33 2 5 4 -7 11 40
198 169 168 6 -5 11 203

232 63 14 18 5 -9 14 72
168 122 120 8 -6 14 174

232 77 36 20 19 -3 22 80
154 96 114 2 -20 22 174

232 81 30 27 9 -6 15 87
150 95 100 5 -10 15 160

236 55 18 11 11 -4 15 59
180 135 144 3 -12 15 192

Table: Parameters with v 6 300 ruled out
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Parameters Ruled Out, Cont.

v k λ µ ν2 ν3 ν2 − ν3 µ− ν3(ν2 + 1)

275 112 30 56 2 -28 30 140
162 105 81 27 -3 30 165

279 128 52 64 4 -16 20 144
150 85 75 15 -5 20 155

285 64 8 16 4 -12 16 76
220 171 165 11 -5 16 225

297 128 64 48 20 -4 24 132
168 87 105 3 -21 24 189

Table: Parameters with v 6 300 ruled out
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Parameters Ruled Out, Cont.

v k λ µ ν2 ν3 ν2 − ν3 µ− ν3(ν2 + 1)

343 102 21 34 4 -17 21 119
240 171 160 16 -5 21 245

343 114 45 34 16 -5 21 119
228 147 160 4 -17 21 245

625 246 119 82 41 -4 45 250
378 213 252 3 -42 45 420

729 208 37 68 4 -35 39 243
520 379 350 34 -5 39 525

729 248 67 93 5 -31 36 279
480 324 300 30 -6 36 486

729 280 127 95 37 -5 42 285
448 262 296 4 -38 42 486

Table: Prime-power parameters with v 6 1000 ruled out
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Thanks!
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