Restrictions on parameters of partial difference sets in nonabelian groups

Eric Swartz (joint with Gabrielle Tauscheck)

William & Mary

July 16, 2021

The groups, graphs, etc., considered in this talk will be finite.

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (PDS)

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

• |G| = v,

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (PDS) if

- |G| = v,
- |S| = k,

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (PDS) if

- |G| = v,
- |S| = k,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product ab^{-1} , where $a, b \in S$, exactly λ different ways, and

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

- |G| = v,
- |S| = k,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product ab^{-1} , where $a, b \in S$, exactly λ different ways, and
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product ab^{-1} , where $a, b \in S$, exactly μ different ways.

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

- |G| = v,
- |S| = k,
- if 1 ≠ g ∈ G and g ∈ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly λ different ways, and
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product ab^{-1} , where $a, b \in S$, exactly μ different ways.

Why partial *difference* set? Originally interest was in abelian groups, and the operation was addition.

Example

- G: additive group of GF(13)
- $S = \{1, 3, 4, 9, 10, 12\}$

Example

- G: additive group of GF(13)
- $S = \{1, 3, 4, 9, 10, 12\}$

For elements in *S*:

- 1 = 4 3 = 10 9
- 3 = 4 1 = 12 9
- 4 = 3 12 = 1 10
- 9 = 12 3 = 10 1
- 10 = 1 4 = 9 12
- 12 = 3 4 = 9 10

Example

- G: additive group of GF(13)
- $S = \{1, 3, 4, 9, 10, 12\}$

For nonidentity elements not in S:

- 2 = 3 1 = 12 10 = 1 12
- 5 = 9 4 = 1 9 = 4 12
- 6 = 9 3 = 10 4 = 3 10
- 7 = 3 9 = 4 10 = 10 3
- 8 = 4 9 = 9 1 = 12 4
- 11 = 1 3 = 10 12 = 12 1

Example

- G: additive group of GF(13)
- $S = \{1, 3, 4, 9, 10, 12\}$

For nonidentity elements not in S:

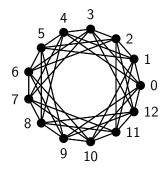
- 2 = 3 1 = 12 10 = 1 12
- 5 = 9 4 = 1 9 = 4 12
- 6 = 9 3 = 10 4 = 3 10
- 7 = 3 9 = 4 10 = 10 3
- 8 = 4 9 = 9 1 = 12 4
- 11 = 1 3 = 10 12 = 12 1

S is a (13, 6, 2, 3)-PDS.

Small example, continued

Example

- G: additive group of of GF(13)
- $S = \{1, 3, 4, 9, 10, 12\}$
- S is a (13, 6, 2, 3)-PDS with $0 \notin S$, S = -S
- Cay(G, S): undirected (13, 6, 2, 3)-strongly regular Cayley graph.



Definition

A (v, k, λ, μ) -PDS is called *regular* if $1 \notin S$ and $S = S^{-1}$.

Definition

A (v, k, λ, μ) -PDS is called *regular* if $1 \notin S$ and $S = S^{-1}$.

Proposition

- G: finite group
- S: regular (v, k, λ, μ) -PDS $\Leftrightarrow Cay(G, S)$: (v, k, λ, μ) -SRG.

Definition

A (v, k, λ, μ) -PDS is called *regular* if $1 \notin S$ and $S = S^{-1}$.

Proposition

- G: finite group
- S: regular (v, k, λ, μ) -PDS $\Leftrightarrow \operatorname{Cay}(G, S)$: (v, k, λ, μ) -SRG.

Definition

The group G acts *regularly* on the set Ω if G acts transitively and fixed-point freely (other than the identity).

Definition

A (v, k, λ, μ) -PDS is called *regular* if $1 \notin S$ and $S = S^{-1}$.

Proposition

- G: finite group
- S: regular (v, k, λ, μ) -PDS $\Leftrightarrow \operatorname{Cay}(G, S)$: (v, k, λ, μ) -SRG.

Definition

The group G acts *regularly* on the set Ω if G acts transitively and fixed-point freely (other than the identity).

SO: regular (v, k, λ, μ) -PDS in $G \leftrightarrow G$ acts regularly on vertices of (v, k, λ, μ) -SRG

What's known?

- Extensive knowledge for abelian groups (see Ma [Ma94])
- Very few known for nonabelian groups!

What's known?

- Extensive knowledge for abelian groups (see Ma [Ma94])
- Very few known for nonabelian groups!
- Smith [Smi95]: regular (4t², 2t² t, t² t, t² t)-PDS's in certain nonabelian groups
- Kantor [Kan86], Ghinelli [Ghi12]: regular

 (q³, q² + q 2, q 2, q + 2)-PDS in Heisenberg group of order q³ (q odd prime power)
- S. [Swa15]: regular (p³, p² + p 2, p 2, p + 2)-PDS S of extraspecial group of order p³, exponent p² (p odd)
- Feng, He, Chen [FHC20]: PDS's of exponent 4, 8, and 16 and of nilpotency class 2, 3, 4, and 6

A generalized quadrangle (GQ) is a point-line incidence geometry.

A GQ with order (s, t) has s + 1 points on each line and t + 1 lines incident with each point.

A generalized quadrangle (GQ) is a point-line incidence geometry.

A GQ with order (s, t) has s + 1 points on each line and t + 1 lines incident with each point.

generalized quadrangle of order $(s, t) \rightarrow$ ((s+1)(st+1), s(t+1), s-1, t+1)-SRG vertices \leftrightarrow points of GQ

A generalized quadrangle (GQ) is a point-line incidence geometry.

A GQ with order (s, t) has s + 1 points on each line and t + 1 lines incident with each point.

generalized quadrangle of order $(s, t) \rightarrow$ ((s+1)(st+1), s(t+1), s-1, t+1)-SRG vertices \leftrightarrow points of GQ

Kantor [Kan86], Ghinelli [Ghi12]: regular

 (q³, q² + q - 2, q - 2, q + 2)-PDS in Heisenberg group of order q³ (q odd prime power) corresponding to a GQ

A generalized quadrangle (GQ) is a point-line incidence geometry.

A GQ with order (s, t) has s + 1 points on each line and t + 1 lines incident with each point.

generalized quadrangle of order $(s, t) \rightarrow$ ((s+1)(st+1), s(t+1), s-1, t+1)-SRG vertices \leftrightarrow points of GQ

- Kantor [Kan86], Ghinelli [Ghi12]: regular

 (q³, q² + q 2, q 2, q + 2)-PDS in Heisenberg group of order q³ (q odd prime power) corresponding to a GQ
- Feng, Li [FL21]: Finite groups acting regularly on points of a finite generalized quadrangle can have unbounded nilpotency class(!!!)

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

Lemma (Yoshiara [Yos07])

G: acts regularly on points of GQ of order (s, t)

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

Lemma (Yoshiara [Yos07])

G: acts regularly on points of *GQ* of order (*s*, *t*) *x*: nonidentity element of *G*

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

Lemma (Yoshiara [Yos07])

G: acts regularly on points of GQ of order (s, t) x: nonidentity element of G d₁(x): number of points sent to collinear points by x

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

Lemma (Yoshiara [Yos07])

G: acts regularly on points of GQ of order (s, t)x: nonidentity element of G $d_1(x)$: number of points sent to collinear points by x Δ : "S \cup {1}" (PDS + identity)

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

Lemma (Yoshiara [Yos07])

G: acts regularly on points of GQ of order
$$(s, t)$$

x: nonidentity element of G
 $d_1(x)$: number of points sent to collinear points by x
 Δ : "S \cup {1}" (PDS + identity)

•
$$d_1(x) = |x^G \cap \Delta| |C_G(x)| \equiv (s+1)(t+1) \pmod{s+t};$$

There does not exist a generalized quadrangle of order (t^2, t) with a group of automorphisms acting regularly on its points.

The main ingredients in this result were the following:

Lemma (Yoshiara [Yos07])

G: acts regularly on points of GQ of order
$$(s, t)$$

x: nonidentity element of G
 $d_1(x)$: number of points sent to collinear points by x
 Δ : "S \cup {1}" (PDS + identity)

•
$$d_1(x) = |x^G \cap \Delta| |C_G(x)| \equiv (s+1)(t+1) \pmod{s+t};$$

• $gcd(s,t) > 1 \Rightarrow x^{\mathcal{G}} \cap \Delta \neq \varnothing$.

Benson's Lemma and its generalization

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t)

Benson's Lemma and its generalization

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t) $d_0(x)$: number of points fixed by x

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t) $d_0(x)$: number of points fixed by x $d_1(x)$: number of points sent to collinear points by x

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t) $d_0(x)$: number of points fixed by x $d_1(x)$: number of points sent to collinear points by x Then,

 $(t+1)d_0(x) + d_1(x) \equiv (s+1)(t+1) \pmod{s+t}.$

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t) $d_0(x)$: number of points fixed by x $d_1(x)$: number of points sent to collinear points by x Then,

 $(t+1)d_0(x) + d_1(x) \equiv (s+1)(t+1) \pmod{s+t}.$

Lemma (De Winter, Kamischke, Wang [DWKW16])

x: nonidentity automorphism of (v, k, λ , μ)-SRG with integer eigenvalues $k > \nu_2 > \nu_3$

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t) $d_0(x)$: number of points fixed by x $d_1(x)$: number of points sent to collinear points by x Then,

 $(t+1)d_0(x) + d_1(x) \equiv (s+1)(t+1) \pmod{s+t}.$

Lemma (De Winter, Kamischke, Wang [DWKW16])

x: nonidentity automorphism of (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$ $d_0(x)$: number of vertices fixed by x

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t) $d_0(x)$: number of points fixed by x $d_1(x)$: number of points sent to collinear points by x Then,

 $(t+1)d_0(x) + d_1(x) \equiv (s+1)(t+1) \pmod{s+t}.$

Lemma (De Winter, Kamischke, Wang [DWKW16])

x: nonidentity automorphism of (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$ $d_0(x)$: number of vertices fixed by x $d_1(x)$: number of vertices sent to adjacent vertices by x

Lemma (Benson [Ben70])

x: nonidentity automorphism of a GQ of order (s, t) $d_0(x)$: number of points fixed by x $d_1(x)$: number of points sent to collinear points by x Then,

 $(t+1)d_0(x) + d_1(x) \equiv (s+1)(t+1) \pmod{s+t}.$

Lemma (De Winter, Kamischke, Wang [DWKW16])

x: nonidentity automorphism of (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$ $d_0(x)$: number of vertices fixed by x $d_1(x)$: number of vertices sent to adjacent vertices by x Then,

$$-\nu_3 d_0(x) + d_1(x) \equiv \mu - \nu_3(\nu_2 + 1) \pmod{(\nu_2 - \nu_3)}.$$

 $\label{eq:Gamma-state-$

 Γ : (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$

G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ)-PDS in G

- Γ : (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$
- G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ)-PDS in G
- x: nonidentity element of G

- Γ: (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$
- G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ) -PDS in G
- x: nonidentity element of G
- $d_1(x)$: number of vertices sent to adjacent vertices by x

- Γ: (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$
- G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ)-PDS in G
- x: nonidentity element of G
- $d_1(x)$: number of vertices sent to adjacent vertices by x
- $\Delta: \text{ "S} \cup \{1\}\text{" (PDS + identity)}$

- Γ: (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$
- G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ) -PDS in G
- x: nonidentity element of G
- $d_1(x)$: number of vertices sent to adjacent vertices by x

$$\Delta$$
: " $S \cup \{1\}$ " (PDS + identity)

Then,

•
$$d_1(x) = |x^G \cap \Delta||C_G(x)| \equiv \mu - \nu_3(\nu_2 + 1) \pmod{\nu_2 - \nu_3};$$

- Γ: (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$
- G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ) -PDS in G
- x: nonidentity element of G

 $d_1(x)$: number of vertices sent to adjacent vertices by x

$$\Delta$$
: " $S \cup \{1\}$ " (PDS + identity)

Then,

•
$$d_1(x) = |x^G \cap \Delta| |C_G(x)| \equiv \mu - \nu_3(\nu_2 + 1) \pmod{\nu_2 - \nu_3};$$

If (ν₂ − ν₃) does not divide μ − ν₃(ν₂ + 1), then x^G ∩ Δ ≠ Ø.

Proposition (S., Tauscheck [ST21])

 Γ : (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$

 Γ : (v, k, λ , μ)-SRG with integer eigenvalues $k > \nu_2 > \nu_3$

G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ)-PDS in G

 Γ : (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$

G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ)-PDS in G

x: nonidentity element of G

 Γ : (v, k, λ , μ)-SRG with integer eigenvalues $k > \nu_2 > \nu_3$

G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, $\lambda, \mu)\text{-PDS}$ in G

- x: nonidentity element of G
- $\Delta: "S \cup \{1\}" (PDS + identity)$

Γ: (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$

- G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, λ, μ)-PDS in G
- x: nonidentity element of G
- Δ : "S \cup {1}" (PDS + identity)

If $\nu_2 - \nu_3$ divides neither $\mu - \nu_3(\nu_2 + 1)$ nor $v - 2k + \lambda - \nu_3(\nu_2 + 1)$, then $x^G \cap \Delta \neq \emptyset$ and $x^G \cap \Delta^c \neq \emptyset$.

Γ: (v, k, λ, μ) -SRG with integer eigenvalues $k > \nu_2 > \nu_3$

- G acts regularly on vertices of $\Gamma \leftrightarrow \exists$ a regular (v, k, $\lambda, \mu)\text{-PDS}$ in G
- x: nonidentity element of G
- Δ : "S \cup {1}" (PDS + identity)

If $\nu_2 - \nu_3$ divides neither $\mu - \nu_3(\nu_2 + 1)$ nor $v - 2k + \lambda - \nu_3(\nu_2 + 1)$, then $x^G \cap \Delta \neq \emptyset$ and $x^G \cap \Delta^c \neq \emptyset$.

Proof.

Apply the previous lemma to both Γ and its complement Γ^{c} !

Let

$$\nu_2 = \frac{1}{2} \left(\lambda - \mu + \sqrt{\Lambda} \right), \quad \nu_3 = \frac{1}{2} \left(\lambda - \mu - \sqrt{\Lambda} \right) \in \mathbb{Z},$$

where $\Lambda = (\lambda - \mu)^2 + 4(k - \mu) = (\nu_2 - \nu_3)^2.$

Let

$$\nu_2 = \frac{1}{2} \left(\lambda - \mu + \sqrt{\Lambda} \right), \quad \nu_3 = \frac{1}{2} \left(\lambda - \mu - \sqrt{\Lambda} \right) \in \mathbb{Z},$$

where $\Lambda = (\lambda - \mu)^2 + 4(k - \mu) = (\nu_2 - \nu_3)^2$.

Corollary (S. Tauscheck [ST21])

Suppose

•
$$|G| = v;$$

Let

$$\nu_2 = \frac{1}{2} \left(\lambda - \mu + \sqrt{\Lambda} \right), \quad \nu_3 = \frac{1}{2} \left(\lambda - \mu - \sqrt{\Lambda} \right) \in \mathbb{Z},$$

where $\Lambda = (\lambda - \mu)^2 + 4(k - \mu) = (\nu_2 - \nu_3)^2$.

Corollary (S. Tauscheck [ST21])

Suppose

•
$$|G| = v;$$

• G has a nontrivial center (EX: G is a p-group);

Let

$$\nu_2 = \frac{1}{2} \left(\lambda - \mu + \sqrt{\Lambda} \right), \quad \nu_3 = \frac{1}{2} \left(\lambda - \mu - \sqrt{\Lambda} \right) \in \mathbb{Z},$$

where $\Lambda = (\lambda - \mu)^2 + 4(k - \mu) = (\nu_2 - \nu_3)^2$.

Corollary (S. Tauscheck [ST21])

Suppose

•
$$|G| = v;$$

- *G* has a nontrivial center (EX: *G* is a p-group);
- $\nu_2 \nu_3$ divides neither of $\mu \nu_3(\nu_2 + 1)$ or $v 2k + \lambda \nu_3(\nu_2 + 1)$.

Let

$$\nu_2 = \frac{1}{2} \left(\lambda - \mu + \sqrt{\Lambda} \right), \quad \nu_3 = \frac{1}{2} \left(\lambda - \mu - \sqrt{\Lambda} \right) \in \mathbb{Z},$$

where $\Lambda = (\lambda - \mu)^2 + 4(k - \mu) = (\nu_2 - \nu_3)^2$.

Corollary (S. Tauscheck [ST21])

Suppose

•
$$|G| = v;$$

- *G* has a nontrivial center (EX: *G* is a p-group);
- $\nu_2 \nu_3$ divides neither of $\mu \nu_3(\nu_2 + 1)$ or $v 2k + \lambda \nu_3(\nu_2 + 1)$.

Then, G does not contain a regular (v, k, λ, μ) -PDS.

Parameters Ruled Out

V	k	λ	μ	ν_2	ν_3	$\nu_2 - \nu_3$	$\mu- u_3(u_2+1)$
28	12	6	4	4	-2	6	14
	15	6	10	1	-5	6	20
63	30	13	15	3	-5	8	35
	32	16	16	4	-4	8	36
88	27	6	9	3	-6	9	33
	60	41	40	5	-4	9	64
105	26	13	4	11	-2	13	28
	78	55	66	1	-12	13	90
105	32	4	12	2	-10	12	42
	72	51	45	9	-3	12	75
105	52	21	30	2	-11	13	63
	52	29	22	10	-3	13	55
117	36	15	9	9	-3	12	39
	80	52	60	2	-10	12	90
176	25	0	4	3	-7	10	32
	150	128	126	6	-4	10	154

Table: Parameters with $v \leq 300$ ruled out

Eric Swartz (W&M)

v	k	λ	μ	ν_2	ν_3	$\nu_2 - \nu_3$	$\mu- u_3(u_2+1)$
176	45	18	9	12	-3	15	48
	130	93	104	2	-13	15	143
176	70	18	34	2	-18	20	88
	105	68	54	17	-3	20	108
176	70	24	30	4	-10	14	80
	105	64	60	9	-5	14	110
189	48	12	12	6	-6	12	54
	140	103	105	5	-7	12	147
195	96	46	48	6	-8	14	104
	98	49	49	7	-7	14	105
208	75	30	25	10	-5	15	80
	132	81	88	4	-11	15	143
208	81	24	36	3	-15	18	88
	126	80	70	14	-4	18	130
225	96	51	33	21	-3	24	99
	128	64	84	2	-22	24	150

Table: Parameters with $v \leq 300$ ruled out

Eric Swartz (W&M)

v	k	λ	μ	ν_2	ν_3	$\nu_2 - \nu_3$	$\mu- u_3(u_2+1)$
231	30	9	3	9	-3	12	33
	200	172	180	2	-10	12	210
231	40	20	4	18	-2	20	42
	190	153	171	1	-19	20	209
231	90	33	36	6	-9	15	99
	140	85	84	8	-7	15	147
232	33	2	5	4	-7	11	40
	198	169	168	6	-5	11	203
232	63	14	18	5	-9	14	72
	168	122	120	8	-6	14	174
232	77	36	20	19	-3	22	80
	154	96	114	2	-20	22	174
232	81	30	27	9	-6	15	87
	150	95	100	5	-10	15	160
236	55	18	11	11	-4	15	59
	180	135	144	3	-12	15	192

Table: Parameters with $v \leq 300$ ruled out

Eric Swartz (W&M)

v	k	λ	μ	ν_2	ν_3	$\nu_2 - \nu_3$	$\mu- u_3(u_2+1)$
275	112	30	56	2	-28	30	140
	162	105	81	27	-3	30	165
279	128	52	64	4	-16	20	144
	150	85	75	15	-5	20	155
285	64	8	16	4	-12	16	76
	220	171	165	11	-5	16	225
297	128	64	48	20	-4	24	132
	168	87	105	3	-21	24	189

Table: Parameters with $v \leq 300$ ruled out

v	k	λ	μ	ν_2	ν_3	$\nu_2 - \nu_3$	$\mu- u_3(u_2+1)$
343	102	21	34	4	-17	21	119
	240	171	160	16	-5	21	245
343	114	45	34	16	-5	21	119
	228	147	160	4	-17	21	245
625	246	119	82	41	-4	45	250
	378	213	252	3	-42	45	420
729	208	37	<u>68</u>	4	-35	39	243
	520	379	350	34	-5	39	525
729	248	67	93	5	-31	36	279
	480	324	300	30	-6	36	486
729	280	127	95	37	-5	42	285
	448	262	296	4	-38	42	486

Table: Prime-power parameters with $v \leq 1000$ ruled out

Thanks!

References I

- Clark T. Benson, *On the structure of generalized quadrangles*, J. Algebra **15** (1970), 443–454. MR 289332
- Stefaan De Winter, Ellen Kamischke, and Zeying Wang, Automorphisms of strongly regular graphs with applications to partial difference sets, Des. Codes Cryptogr. 79 (2016), no. 3, 471–485. MR 3489753
- Tao Feng, Zhiwen He, and Yu Qing Chen, *Partial difference sets and amorphic Cayley schemes in non-abelian 2-groups*, J. Combin. Des. **28** (2020), no. 4, 273–293. MR 4069729
- Tao Feng and Weicong Li, The point regular automorphism groups of the Payne derived quadrangle of W(q), J. Combin. Theory Ser. A 179 (2021), 105384, 53. MR 4196562

References II

- Dina Ghinelli, Characterization of some 4-gonal configurations of Ahrens-Szekeres type, European J. Combin. 33 (2012), no. 7, 1557–1573. MR 2923469
- William M. Kantor, Generalized polygons, SCABs and GABs, Buildings and the geometry of diagrams (Como, 1984), Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 79–158. MR 843390
- S. L. Ma, *A survey of partial difference sets*, Des. Codes Cryptogr. **4** (1994), no. 3, 221–261. MR 1277942
- Ken W. Smith, *Non-abelian Hadamard difference sets*, J. Combin. Theory Ser. A **70** (1995), no. 1, 144–156. MR 1324005
- Eric Swartz and Gabrielle Tauscheck, Restrictions on parameters of partial difference sets in nonabelian groups, J. Combin. Des. 29 (2021), no. 1, 38–51. MR 4178178

- Eric Swartz, A construction of a partial difference set in the extraspecial groups of order p³ with exponent p², Des. Codes Cryptogr. **75** (2015), no. 2, 237–242. MR 3326170
- Satoshi Yoshiara, A generalized quadrangle with an automorphism group acting regularly on the points, European J. Combin. 28 (2007), no. 2, 653–664. MR 2287459