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ON A NEW FAMILY OF SYMMETRY CODES AND 
RELATED NEW FIVE-DESIGNS 

BY VERA PLESS 

Communicated by Wallace Givens, May 15, 1969 

For every prime p=—l (3) we define a self-orthogonal (2p + 2, 
p + 1) code over GF (3). I t can be shown that the group leaving a 
(2p+2, p + 1) code invariant is PSL2(p). The minimum weights of the 
first five codes in the family are determined and lead to new 5-designs. 

Let /, r, and n be integers with t^r^n. A X ; / — r — n design D is a 
collection of subsets of the n integers, each subset containing r ele­
ments, such that any /-subset of the n integers is contained in the 
same number X of subsets in D. Some designs, a 1; 5 — 6 — 12, a 1; 
5 — 8 — 24, and a 48; 5 —12—24 associated with the Mathieu groups 
Mu and -M24, have been known for a long time. Recently, [ l ] and [5], 
2; 5 — 6 — 12 and 2; 5 — 8 — 24 designs have been found. Using coding 
theory [2] other 5-designs were found for w = 24 and w = 48. We have 
found new 5-designs for # = 36 and n = 60 and a number of r's. Also 
we found new 5-designs for n = 24 and n = 48 which are not equivalent 
to the ones mentioned above. Two /-designs are called equivalent if 
there is a permutation of the n integers so that the subsets of D go 
onto subsets in D. 

Let Vtp+% be a vector space over GF(3) with a fixed, orthonormal 
basis. We call a subspace of this space an error correcting code. We 
define a family of codes of dim(£ + l) (referred to as (2p + 2, p + 1) 
codes) by a basis (/, Sp) where Sp is given below. 
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code generated by (ƒ, Sp) as C(p). 
1. We refer to the 
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For every odd prime power q where q = -l(3) we defme a (2q + 2, q + 1) 
code over the field of three elements. It is shown that all the codes in this family 
are self orthogonal. 

For q = 5, the (12,6) code is equivalent to the extended Golay code. For 
q = 11, it can be shown that the minimum weight of the (24, 12) code is 9. 
For q = 17,23,29 it is shown, in part by computer, that the minimum weights 
of the (36, 18), (48,24), and (60, 30) codes are 12, 15, and 18 respectively. 

There are 5-designs associated with vectors of certain weights in the (12, 6), 
(24, 12), (36,18), (48,24), and (60, 30) codes. There are new 5-designs associated 
with the last four codes mentioned. The 5-designs related to the (36, 18) and 
(60,30) codes are the first 5-designs found with their parameters. 

For each q we construct a group P of (2q + 2) x (2q + 2) monomial matrices. 
We show that P leaves the (2q + 2, q + 1) code in the family invariant, and 
that P/{I, --I} is isomorphic to PGL,(q). 

We can form a Hadamard matrix by considering the rows of this matrix as 
certain maximal weight vectors contained in this code. This Hadamard matrix 
is left invariant by the group P described above. 

I. INTRODUCTION 

In this paper we deCne a family of codes over GF(3), where each code 
is associated with q, a power of an odd prime, such that q = -l(3). The 
first code in the family is the well known Golay (12, 6) code. The next 
four codes have high minimum weights and new 5-designs are associated 
with them. We also describe a group which leaves each code invariant. 

In Section II we define each code in terms of a basis [I, S,] where S, 
is given in terms of the residues and non-residues in GF(q). The matrix 
S, figures prominently [5, pp. 209,210] in the construction of Hadamard 
matrices. In Section II these codes are shown to be self orthogonal. Also 
it is shown that, for q = l(4), [-S, , I] is also a basis of its code, and, 
for q = 3(4), [S, , I] is again a basis of its code. 

In Section III, using this and other properties, we determine the 
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ABSTRACT 

A t-design on a point-set S is a collection ~ of subsets of S, all of the same cardinality, 
with the property that every t-subset of S is contained in precisely ,~ elements of ~,  
,~ a fixed integer parameter of the design. Via the theory of error-correcting codes, 
we construct here several new 5-designs on 24 and 48 points as well as the two classic 
5-designs on 12 and 24 points associated with the Mathieu groups M12 and M2~. 
We are able, in many cases, to say what the automorphism groups of the new 5-designs 
are. 

1. INTRODUCTION 

Tactical  configurat ions and H a d a m a r d  matrices,  s tudied for many 
years by combinator ia l is ts ,  and the newer subject called error-correct ing 
codes, s tudied for less than twenty years, have some interesting inter- 
connections.  The purpose  o f  this repor t  is to establish a number  of  new 

results arising therefrom. 
Our  main  result  is the construct ion (via Theorem 4.2) of  several new 

5-designs on 24 and 48 points  and the de te rmina t ion  (Section 5) of  their 
au tomorph i sm groups as PSL2(23) and PSL2(47), respectively. A secondary 
result (Section 5) is that  PSL2(I) is the au tomorph i sm group of  certain 
quadrat ic-residue codes of  length 1 + 1 for  all pr imes l having (l - -  1)/2 
pr ime and satisfying 23 ~< l ~< 4,079. (For  l ---- 23 we use [15] and a 
new 5-design on 24 points;  the other cases are an immedia te  consequence 
of  the Parker  and Nikola i  search [22].) We have derived elsewhere [7] 
the consequence that  for l ---- - -1  (rood 12), the Pa l ey -Hadamard  matr ix  
of  order  l + 1 has PSL~(/) as au tomorph i sm group for l as above.  

* The research reported in this paper was sponsored by the Air Force Cambridge 
Research Laboratories, Office of Aerospace Research, under contract AF19(628)-5998. 

Lehigh University and Sylvania. 
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Let A and B be linear or thogonal  (n, k) and (n, n -  k) codes over 
GF(q)  with min imum weights d and e. Let t be an integer less than d. 
Let Vo be the largest integer satisfying 

Vo-- [v o z _ ( q -  q -  1 2)] < d, 

and w o the largest integer satisfying 

Wo --  [ w~ + (q --  2) q = ~ -  ] < e ,  

where, if q = 2, we take Vo = w0 = n. Then two vectors of  A with weight 
at most  Vo having their non-0 coordinates in the same places must  be 
scalar multiples of  each other, and the same for B. This proper ty  is essential 
to our method of  p roof  of  our main result, 

THEOREM 4.2. Suppose that the number of  non-O weights of  B which are 
less than or equal to n -- t is itself less than or equal to d -- t. Then, for 
each weight v with d ~ v <~ Vo , the vectors of  weight v in A yield a t-design, 
and for each weight w with e ~ w ~ min{n - t, w0}, the vectors of  weight w 
in B yieM a t.design. 

Before proving the above result we remark  that  for B we will in fact 
show that  for each weight w, with e ~ w ~ min{n --  t, w0}, the vectors 
of  weight w yield blocks the complements  of  which form a t-design. We 
will need the following combinatorial  

LEMMA. Suppose (S, ~ )  is a t-design. Then, i f  T and T' are two t-subsets 
o f  S, and k an integer satisfying 0 <~ k ~ t, we see that 

] { D e ~ ; t D n T l  = k } l  = [ { D e ~ ; I D ~ T ' I  = k } t .  

That is, the number of  subsets in ~ intersecting a given t-subset in precisely 
k points is independent o f  the chosen t-subset. 

PROOF: For  k = t the assertion is simply the condit ion that  (S, ~ )  is 
a t-design. Now we use induction downward observing that  for KC_ T, 
] K p = k, we see that  

I{D e ~ ;  K_C D}[ --  d --  k --  Ak, 
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Summary

A code L(q), monomially equivalent to the Pless symmetry code
C(q) of length 2q + 2, contains the (0,1)-incidence matrix of a
Hadamard 3-(2q + 2,q + 1, (q − 1)/2) design D(q) associated
with a Paley-Hadamard matrix of type II.
The ternary extended QR code of length n ≡ 0 (mod 12) contains
a Hadamard 3-design associated with a Paley-Hadamard
matrix of type I.
If q = 5,11,17,23, the full permutation automorphism group of
L(q) coincides with the full automorphism group of D(q).
A similar result holds for the ternary extended QR codes of
lengths 24 and 48.
All Hadamard matrices of order 36 formed by codewords of the
Pless symmetry code C(17) are classified up to equivalence:
(1) the Paley-Hadamard matrix H of type II, with a full
automorphism group of order 19584;
(2) a regular Hadamard matrix H ′ such that the related
symmetric 2-(36,15,6) design has trivial automorphism group.
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MacWilliams Identity and Gleason’s Theorem

MacWilliams Identity

If A(x) =
∑n

i=0 Aix i and B(x) =
∑n

i=0 Bix i are the weight enumerators
of a linear [n, k ]q code C and its dual code C⊥, then

qkB(x) = (1 + (q − 1)x)nA(
1− x

1 + (q − 1)x
).

An upper bound (Mallows and Sloane 1973)
If C is a self-dual [n,n/2,d ] ternary code then

d ≤ 3[
n
12

] + 3.

Definition
A ternary self-dual code of length n is extremal if it meets the upper
bound: d = 3[ n

12 ] + 3.
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The Assmus-Mattson Theorem

Theorem (Assmus and Mattson 1969)
If C is an extremal ternary self-dual code of length n ≡ 0 (mod 12)
then the supports of all codewords of any nonzero weight w < n are
the blocks of a 5-design.

Theorem (Assmus and Mattson 1969)
The ternary extended quadratic residue codes QR∗ of length
n = 12,24,48 and 60 are extrenmal and support 5-designs.

Note
The code QR∗11 is equivalent to the extended ternary Golay code G12.
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Pless Symmetry Codes

Theorem (V. Pless 1969)
Let q ≡ −1 (mod 3) be an odd prime power, and let

Sp =



0 1 1 · · · 1 · · · 1
χ(−1) χ(0) χ(1) · · · χ(β) · · · χ(−1)
· · ·

χ(−1) · · · χ(β − α) · · ·
· · ·

χ(−1)

 ,

where χ(0) = 0, χ(a) = 1 if a 6= 0 is a square in GF (q),
and χ(a) = −1 if a 6= 0 is not a square in GF (q).

The ternary code C(q) generated by (Iq+1,Sq) is self-dual.
The codes C(q) for q = 5,11,17,23,29 (n = 12,24,36,48,60)
are extremal and support 5-designs.

Note. The symmetry code C(5) is equivalent to the Golay code G12.
5 / 25



The known extremal ternary self-dual codes of
length n ≡ 0 (mod 12)

n = 12: G12 = QR∗11 = C(5).
n = 24: QR∗23, C(11).
n = 36: C(17).
n = 48: QR∗47, C(23).
n = 60: QR∗59, C(29), NV .

The code NV was found by G. Nebe and D. Villar in 2013 as a group
theoretic analogue of the Pless symmetry code C(29).

Theorem
Up to equivalence, there is only one extremal ternary self-dual code of
length 12 (G12), and two inequivalent codes of length 24 (QR∗23 and
C(11)).
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Dedicated to the memory of Professor Stefan Dodunekov
Abstract. A series of monomial representations of SL2(p) is used to construct a
new series of self-dual ternary codes of length 2(p+1) for all primes p ≡ 5 (mod 8).
In particular we find a new extremal self-dual ternary code of length 60.

1 Introduction

In 1969 Vera Pless [6] discovered a family of self-dual ternary codes P(p) of
length 2(p+1) for primes p with p ≡ −1 (mod 6). Together with the extended
quadratic residue codes XQR(q) of length q + 1 (q prime, q ≡ ±1 (mod 12))
they define a series of self-dual ternary codes of high minimum distance (see [3,
Chapter 16, §8]). For p = 5, the Pless code P(5) coincides with the Golay code
g12 which is also the extended quadratic residue code XQR(11) of length 12.

Using invariant theory of finite groups, A. Gleason [2] has shown that
the minimum distance of a self-dual ternary code of length 4n cannot exceed
3b n

12c+ 3. Self-dual codes that achieve equality are called extremal. Both con-
structions, the Pless symmetry codes and the extended quadratic residue codes
yield extremal ternary self-dual codes for small values of p.

This short note gives an interpretation of the Pless codes using monomial
representations of the group SL2(p). This construction allows to read off a large
subgroup of the automorphism group of the Pless codes (which was already
described in [6]). A different but related series of monomial representations of
SL2(p) is investigated to construct a new series of self-dual ternary codes V(p)
of length 2(p + 1) for all primes p ≡ 5 (mod 8). The automorphism group of
V(p) contains the group SL2(p). For p = 5 we again find V(5) ∼= g12 the Golay
code of length 12, but for larger primes these codes are new. In particular the
code V(29) is an extremal ternary code of length 60, so we now know three
extremal ternary codes of length 60: XQR(59), P(29) and V(29).

2 Codes and monomial groups

Let K be a field, n ∈ N. Then the monomial group Monn(K∗) ≤ GLn(K)
is the group of monomial n × n-matrices over K, where a matrix is called

tonchev
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Classification of ternary self-dual codes

The largest length n ≡ 0 (mod 4) for which all ternary self-dual
codes have been classified up to equivalence, is n = 24 (Harada
and Munemasa 2009).
The largest length n ≡ 0 (mod 4) for which all extremal ternary
self-dual codes have been classified up to equivalence, is n = 28
(Harada, Munemasa and Venkov 2009).
A partial classification of extremal ternary self-dual codes of
length n ≤ 40 admitting automorphisms of prime order p ≥ 5 was
given by C. W. Huffman (1992).
G. Nebe (2012) proved that, up to equivalence, the only extremal
ternary self-dual codes of length 48 that admit an automorphism
of a prime order p ≥ 5, are the Pless symmetry code and the
extended QR code.
Extremal ternary self-dual codes of length n ≡ 0 (mod 12)
do not exist for n = 72, 96, 120, and all n ≥ 144, because the
weight enumerator contains a negative coefficient.
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Hadamard matrices and designs

A Hadamard matrix of order n is an n × n matrix H of 1’s and −1’s
such that HHT = nI, where I is the identity matrix.
It follows that n = 1,2, or n = 4t for some integer t ≥ 1.

An automorphism of a Hadamard matrix H is a pair of
{0,1,−1}-monomial matrices L, R such that LHR = H.

Two Hadamard matrices H1, H2 of the same order are equivalent if
there are monomial matrices L, R such that LH1R = H2.

A Hadamard matrix H is normalized with respect to its i th row and j th
column if all entries in row i and column j are equal to 1.
If H is a Hadamard matrix of order n = 4t normalized with respect to
row i and column j , deleting the i th row and the j th column and
replacing all −1’s with zeros gives the (0,1)-incidence matrix of a
symmetric 2-(4t− 1,2t− 1, t− 1) design D called a Hadamard
2-design.
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If H is a Hadamard matrix of order n = 4t normalized with respect to
row i and column j , deleting the j th column of H and the j th column of
−H from the matrix (H,−H) gives the point-by-block (±1)-incidence
matrix of a Hadamard 3-(4t,2t, t− 1) design D∗.

A Hadamard matrix H of order n = 4t is regular if all rows of H contain
the same number k of −1’s.
Then t = m2 for some integer m, k = 2m2 ±m, and replacing all −1’s
with zeros gives the (0,1)-incidence matrix of a symmetric
2-(4m2,2m2 ± t,m2 ±m) design (called sometimes a Menon design).
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Symmetry codes and Hadamard matrices

Let q be an odd prime power such that q ≡ −1 (mod 3).

Theorem (Pless 1972)
if q ≡ 1 (mod 4), the matrix

H1(q) =

(
I + Sq −I + Sq
−I + Sq −I − Sq

)
(1)

is a Hadamard matrix whose rows are codewords from C(q).
If q ≡ 3 (mod 4), the matrix

H3(q) =

(
I + Sq I + Sq
I − Sq −I + Sq

)
(2)

is a Hadamard matrix whose rows are codewords from C(q).

The Hadamard matrices (1), (2) are equivalent to Paley-Hadamard
matrices of type II.

10 / 25



The automorphism group of C(q)

Theorem (Pless 1972)

The symmetry code C(q) is invariant under a group of order q(q2 − 1)
isomorphic to PGL(2,q).

If q = 5, 11, or 23, the rows of the Hadamard matrix H1(q) from (1)
(resp. H3(q) from (2)) and −H1(q) (resp. −H3(q)) exhaust all
codewords of full weight, and span the code.

Theorem (Pless 1972)
If q = 5, 11, or 23, the full monomial automorphism group of C(q)
coincides with the full automorphism group of H1(q) (resp. H3(q)).

Note. The full automorphism group of a Paley-Hadamard matrix of
type II for q > 5 was determined by de Launey and Stafford in 2008,
and is of order 4fq(q2 − 1) if q = pf , where p is prime.
Note. The symmetry code C(17) of length 36 contains 888 codewords
of weight 36, while the number of codewords of weight 60 in C(29) is
41184. 11 / 25



The code L(q): a monomial equivalent of C(q)

The sum of all rows of the generator matrix of the symmetry code C(q)
is a vector v of full Hamming weight 2q + 2, with all components equal
to 1 if −1 is not a square in GF (q), and v has 2q + 1 components
equal to 1, and the position labeled by∞ is equal to −1 whenever −1
is a square in GF (q).

Next, we consider a code L(q) which is monomially equivalent to the
Pless symmetry code C(q) and always contains the all-one vector,
namely the code with a generator matrix G′ given by

G′ = (Iq+1,Uq), (3)

where Uq is a (q + 1)× (q + 1) matrix obtained from Sq by replacing
every nonzero entry in the first column with −1. A parity check matrix
of L(q) is given by

P = (−UT
q , Iq+1). (4)
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Symmetry codes and Hadamard 3-designs

Theorem
The matrix H given by

H =

(
G′ + P
G′ − P

)
=

(
Iq+1 − UT

q Uq + Iq+1
Iq+1 + UT

q Uq − Iq+1

)
(5)

is a Hadamard matrix with rows being full weight codewords of L(q).

Theorem
The code L(q) contains a set of 4q + 2 (0,1)-codewords of weight
q + 1 that form the block-by-point incidence matrix of a Hadamard
3-(2q + 2,q + 1, (q − 1)/2) design D(q) associated with a
Paley-Hadamard matrix of type II.
If q = 5,11,17,23, the code L(q) contains exactly 4q + 2
(0,1)-codewords of weight q + 1, and every such codeword is the
incidence vector of a block of the Hadamard 3-design D(q).
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The permutation automorphism group of L(q)

Theorem
If q = 5,11,17,23, the full permutation automorphism group of L(q)
coincides with the full automorphism group of the Hadamard 3-design
D(q), being of order q(q − 1).

Note. The code L(29) contains 19606 (0,1)-codewords of weight 30.
It is an open question whether this set contains the incidence matrices
of any Hadamard 3-(60,30,14) designs that are not isomorphic to
D(29).
Note. The number of codewords of weight 60 in L(29) is 41184. It
seems likely that there may be Hadamard matrices of order 60 formed
by codewords of weight 60 that are not equivalent to the
Paley-Hadamard matrix of type II.
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The code L(17)

The set of all 888 codewords of L(17) of full weight 36 comprises of
the following disjoint subsets:

the 36 rows of the Hadamard matrix H (5) normalized with respect
to a row 1̄;
the 36 rows of 2H that include a constant row 2̄;
a set T of 408 codewords having 15 components equal to 1 and
21 components equal to 2;
a set 2T of 408 codewords obtained by multiplying every
codeword from T by 2.

Note. Adding 2̄ to any (0,1)-codeword of weight 18 gives a codeword
of weight 36 with 18 1’s and 18 2’s; hence the code L(17) contains
exactly 70 (0,1)-codewords of weight 18 obtained by adding the
codeword 2̄ to the rows of H and 2H, and these 70 (0,1)-codewords
form the incidence matrix of the 3-design D(17).
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Hadamard matrices of order 36 contained in L(17)

Theorem
1 The code L(17) contains two equivalence classes of Hadamard

matrices of order 36:
- a Hadamard matrix H equivalent to a Paley-Hadamard matrix of
type II, with full automorphism group of order 19584 = 273217;
- a second Hadamard matrix H′, being a regular Hadamard matrix
such that the associated symmetric 2-(36,15,6) design D′ has a
trivial automorphism group.

2 The ternary code spanned by the incidence matrix of the
2-(36,15,6) design D′ is an extremal ternary [36,18,12] code
equivalent to the symmetry code C(17).

3 The automorphism group of L(17) partitions the set of codewords
of weight 36 into two orbits of length 72 and 816 respectively, the
orbit of length 72 consisting of rows of H and −H.

4 The full automorphism group of the code L(17) coincides with the
full automorphism group H.
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Some Hadamard matrices of order 36 and their
codes

Up to equivalence, there are exactly 11 Hadamard matrices of
order 36 with automorphism groups of order divisible by 17
(Tonchev 1986). Each of these matrices spans a ternary self-dual
code of length 36, but only one, namely the Paley-Hadamard
matrix of type II, spans an extremal code, equivalent to the Pless
symmetry code C(17).
Up to equivalence, there exists exactly one Hadamard matrix of
order 36 with a doubly-transitive automorphism group, isomorphic
to SP(6,2)× Z2 (N. Ito and J. Leon, 1980). This matrix spans a
ternary self-orthogonal code of minimum distance 12 and
dimension 14.
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Hadamard matrices and ternary QR codes

The symmetry codes C(11), C(23), and C(29) have siblings with
the same parameters and weight distribution, being ternary
extended quadratic-residue codes.
If q ≡ 3 (mod 4) is a prime power, a quadratic residue (QR) code
of length q is a code spanned by the (0,1)-incidence matrix A of a
symmetric Hadamard 2-(q, (q − 1)/2, (q − 3)/4) design
associated with a Paley-Hadamard matrix of type I.
The extended code is spanned by a matrix obtained by bordering
A with the all-one column.
If, in addition, q ≡ −1 (mod 3), that is, q = 12s + 11, the ternary
extended QR code is self-dual.

18 / 25
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Theorem
Let q = 12s + 11 be a prime power, and let QRq be the ternary
extended QR code of length q + 1.

1 QRq contains a Paley-Hadamard matrix of type I having as rows
codewords of weight q + 1.

2 QRq contains a set of 2q (0,1)-codewords of weight (q + 1)/2 that
form the incidence matrix of a Hadamard 3-design associated
with the Paley-Hadamard matrix of type I of order q + 1.

3 If q = 11, 23 or 47, QRq contains exactly 2q (0,1)-codewords of
weight (q + 1)/2, and the permutation automorphism group of the
code coincides with the full automorphism group of the Hadamard
3-design from part (2).

Note. The number of codewords of full weight 60 in QR59 is 41184. It
is an interesting open question whether there are any Hadamard
matrices of order 60 formed by codewords of weight 60 that are not
equivalent to the Paley-Hadamard matrix of type I.
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Hadamard designs and self-dual codes

Hadamard matrices and designs have been used for the construction
of self-orthogonal and self-dual codes over other finite fields.

The extended binary Golay code is generated by a bordered
incidence matrix of a symmetric Hadamard 2-(23,11,5) design
associated with a Paley-Hadamard matrix of type I.
Hadamard matrices of order 28 with an automorphism of order 7
were used for the classification of self-orthogonal codes over
GF (7):

V. Pless and V. D. Tonchev, Self-dual codes over GF (7), IEEE
Trans. Info. Theory, 33 (1987) 723-727.

V. D. Tonchev, Hadamard matrices of order 28 with an
automorphism of order 7, J. Combin. Theory Set A 40 (1985)
62-81.
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Binary extremal self-dual codes derived from
Hadamard matrices and designs

The Paley-Hadamard matrix of type II of order 28 is the only
Hadamard matrix of this order that admits an automorphism of
order 13 and yields an extremal binary self-dual code of length 56:

V. D. Tonchev, Hadamard matrices of order 28 with an
automorphism of order 13, J. Combin. Theory Set A 35
(1983), 43-57.

V. D. Tonchev, Self-orthogonal designs and extremal
dobly-even codes, J. Combin. Theory Set A 52 (1989),
197-205.

Many more extremal doubly-even binary self-dual codes derived
from Hadamard matrices of order 28 were found in

F. C. Bussemaker and V. D. Tonchev, New extremal
doubly-even codes of length 56 derived from Hadamard
matrices of order 28, Discrete Math. 76 (1989), 45-49.
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Open Questions

A general open question is whether there are more, yet unknown,
extremal ternary self-dual codes of length n ≡ 0 (mod 12).
Specifically,

1 Is the symmetry code C(17) the only extremal code of length 36?
2 Are QR∗47 and C(23) the only extremal codes of length 48?
3 Are QR∗59, C(29), and NV the only extremal codes of length 60?
4 Is there a Hadamard matrix of non-Paley type that spans QR∗59 or

C(29)?
5 Is the Nebe-Villar code the row space of a Hadamard matrix of

order 60?
6 Is there an extremal ternary self-dual code of length 84, 108, or

132?
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Thank You!
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