
Unit gain graphs with two distinct eigenvalues
and systems of lines in complex space

Edwin van Dam

joint work with Pepijn Wissing

Tilburg University, The Netherlands

Combinatorial Designs and Codes

Rijeka, Croatia (online), July 12, 2021

Edwin van Dam Tilburg University

Tilburg University



Outline

Gain graphs and the gain matrix

Gain graphs with two eigenvalues

Representation by lines in complex space

Small multiplicity

Small valency

Edwin van Dam Tilburg University

Tilburg University



Complex unit gain graphs

Let Γ = (V ,E ) be a bidirected graph: uv ∈ E if and only if vu ∈ E .

Let T := {z ∈ C : |z | = 1}.

ψ : E 7→ T, with ψ(uv) = ψ(vu)−1, is a gain function.

Ψ = (Γ, ψ) is called a (unit) gain graph.

We consider the 0ψ-gain matrix A: zero for nonedges and diagonal.

This gain matrix A is a Hermitian matrix, so it is diagonalizable with real
eigenvalues

The gain of a walk is the product of the gains of the traversed arcs.

trA2 equals twice the number of edges in the underlying graph.
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The Hermitian adjacency matrix

The gain matrix generalizes:

the adjacency matrix of graphs and signed graphs,

the Hermitian adjacency matrix (of several kinds) of digraphs
[Guo and Mohar, Liu and Li 2015]

the Eisenstein matrix for signed digraphs
[Wissing and EvD 2020 (next talk)]
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Spectral characterizations and switching

Which unit gain graphs are determined by the spectrum?

The empty graphs!

The converse graph? A and A> have the same spectrum.

Diagonal switching ....

S∗AS and A have the same spectrum if S∗S = I .

Let S be a diagonal matrix with units on the diagonal. If AΓ′ = S∗AΓS ,
then we call Γ and Γ′ (diagonal) switching equivalent.

Γ and Γ′ are called switching isomorphic if Γ′ is switching equivalent to Γ
or its converse, possibly after relabeling the vertices.
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Two eigenvalues

Eigenvalues θ1 and θ2 with multiplicities m and n −m.

A2 = aA + kI , with a = θ1 + θ2 and k = −θ1θ2.

Diagonal: (underlying) graph is k-regular.

θ1 =

√
k(n −m)

m
and θ2 = −

√
km

n −m
.

a ≤ n − 2 with equality if and only if Ψ “is” a complete graph: all
triangles must have gain 1.

This also characterizes the case m = 1 (for a ≥ 0).

[Cvetković] coclique upper bound m follows from interlacing
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Weighing matrices (a = 0)

The case a = 0: A2 = kI .

A complex unit weighing matrix W satisfies WW ∗ = kI .

“Graphical weighing matrices” (Hermitian with constant diagonal), e.g.,

W =


0 1 1 1
1 0 i −i
1 −i 0 i
1 i −i 0

 .

“Bipartite incidence graph” A =

[
0 W

W ∗ 0

]
Many examples!
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The Fano plane (a /∈ Z)

From the incidence matrix of the Fano plane:

A = − 1√
8
cycl(0 1 + i

√
7 1 + i

√
7 1− i

√
7 1 + i

√
7 1− i

√
7 1− i

√
7)

A2 = 1√
2
A + 6I

θ1 = 2
√

2, θ2 = − 3
2

√
2, m = 3.
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Signed graphs

Undirected graphs with two eigenvalues must be complete graphs

Signed T (5) with θ1 = 3, θ2 = −2, m = 4.

[Ramezani 2018] Signed triangular graphs with two eigenvalues
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Signed digraphs

(Signed) digraph on GQ(2,2) with θ1 = 3, θ2 = −2, m = 6.

Gains are third roots of unity

Quotient of distance-regular antipodal 3-cover of GQ(2,2)
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Representations in complex space

Above examples have nice representations by lines in complex space Cm.

I + θ−1
minA = N∗N

Gram matrix of Hermitian inner products of n unit vectors in Cm.

Replacing the unit vectors by scalar (unit) multiples is diagonal switching.

Inner products are 0 or have absolute value −θ−1
min.

Absolute bound [folklore]:

n ≤ m2 if underlying graph is complete

n ≤ m2(m + 1)/2 if not

Proposition. If the underlying graph has eigenvalue − km
n−m with

multiplicity m′ ≥ 0, then n ≤ m2 + m′.
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Characterization and dismantlability

Proposition. A has two eigenvalues (or is empty) ⇔ NN∗ = n
m I .

Examples: SIC-POVMs (n = m2), Mutually unbiased bases, tight frames

Dismantle into subgraphs like MUBs?

Proposition. If Γ has a subgraph Γ1 with two eigenvalues represented by
the vectors of N1 (in the same complex space), then the remaining
vectors (N2) also represent a graph Γ2 with two eigenvalues (unless it is
empty).

Proof: n
m I = NN∗ = N1N

∗
1 + N2N

∗
2 = n1

m I + N2N
∗
2 .

Examples: Mutually Unbiased Bases

A (maximal) m-coclique corresponds to an orthonormal basis of Cm.
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Multiplicity at most 3

Theorem

Any connected two-eigenvalue gain graph with a multiplicity at most 3
and a ≥ 0 is switching isomorphic to one of the gain graphs in below
table.

m Graph Order k DS Graph Order k DS
1 Kn n n − 1 *

2
IG(W2) 4 2 * K

(γ)
2,2,2 MUBs 6 4 *

W4 4 3 *

3

IG(W3) 6 3 * 3 MUBs 9 6 *

T
(x)
6 6 4 SICPOVM 9 8 *

ETF, Donut(z) 6 5 4 MUBs 12 9 *
Fano 7 6 *

Table: A star in the DS column indicates that any cospectral gain graph is
switching isomorphic.
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Valency at most 4

Theorem

Any connected two-eigenvalue gain graph with degree at most 4 and
a ≥ 0 is switching isomorphic to one of the gain graphs in below table.

k Graph Order m DS k Graph Order m DS

2
K3 3 1 *

4

K5 5 1 *

IG(W2) 4 2 * K
(γ)
2,2,2 6 2 *

ND(W4) 8 4
IG(W5) 10 5

3

K4 4 1 * ND(IG(W3)) 12 6
W4 4 2 * IG(W7) 14 7
IG(W3) 6 3 * ND(ND(IG(W2))) 16 8

ND(IG(W2)) 8 4 * T
(x)
2t 2t, t ≥ 4 t

Table: A star in the DS column indicates that any connected, cospectral gain
graph is switching isomorphic.

2W4 and ND(IG(W2)) are cospectral
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The Witting polytope

The Witting polytope in C4 has 240 vertices occuring in 40 lines,
meeting the absolute bound.

Take the 4 standard basis vectors along with

1
√

3

[
1 0 − ϕj − ϕh

]>
,

1
√

3

[
1 − ϕj 0 ϕh

]>
,

1
√

3

[
1 ϕj ϕh 0

]>
,

1
√

3

[
0 1 − ϕj ϕh

]>
,

with j , h ∈ {0, 1, 2}.

Unit gain graph with spectrum
{

9
√

3
[4]
,−
√

3
[36]
}

.

Underlying graph is the complement of GQ(3, 3).

Partition the 40 vectors into ten orthonormal bases: a spread.

“Dismantle”: gain graphs with spectrum
{

(t − 1)
√

3
[4]
,−
√

3
[4(t−1)]

}
,

t ∈ {2, . . . , 10}.
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More examples

Many interesting examples with m = 5 from the reflection group ST33

Many interesting examples with m = 6 from the Coxeter-Todd lattice

Donut graphs (k = 5)
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The end

Many thanks to the organizers!

https://arxiv.org/abs/2105.09149
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