# Unit gain graphs with two distinct eigenvalues and systems of lines in complex space

#### Edwin van Dam

joint work with Pepijn Wissing
Tilburg University, The Netherlands

Combinatorial Designs and Codes

Rijeka, Croatia (online), July 12, 2021



#### Outline

- Gain graphs and the gain matrix
- Gain graphs with two eigenvalues
- Representation by lines in complex space
- Small multiplicity
- Small valency

## Complex unit gain graphs

Let  $\Gamma = (V, E)$  be a bidirected graph:  $uv \in E$  if and only if  $vu \in E$ .

Let 
$$\mathbb{T}:=\{z\in\mathbb{C}\ :\ |z|=1\}.$$

$$\psi: E \mapsto \mathbb{T}$$
, with  $\psi(uv) = \psi(vu)^{-1}$ , is a gain function.

 $\Psi = (\Gamma, \psi)$  is called a *(unit)* gain graph.

## Complex unit gain graphs

Let  $\Gamma = (V, E)$  be a bidirected graph:  $uv \in E$  if and only if  $vu \in E$ .

Let 
$$\mathbb{T}:=\{z\in\mathbb{C}\ :\ |z|=1\}.$$

 $\psi: E \mapsto \mathbb{T}$ , with  $\psi(uv) = \psi(vu)^{-1}$ , is a gain function.

 $\Psi = (\Gamma, \psi)$  is called a *(unit)* gain graph.

We consider the  $0\psi$ -gain matrix A: zero for nonedges and diagonal.

This gain matrix A is a Hermitian matrix, so it is diagonalizable with real eigenvalues

The gain of a walk is the product of the gains of the traversed arcs.

 $tr A^2$  equals twice the number of edges in the underlying graph.



#### The Hermitian adjacency matrix

#### The gain matrix generalizes:

- the adjacency matrix of graphs and signed graphs,
- the Hermitian adjacency matrix (of several kinds) of digraphs
   [Guo and Mohar, Liu and Li 2015]
- the Eisenstein matrix for signed digraphs [Wissing and EvD 2020 (next talk)]

## Spectral characterizations and switching

Which unit gain graphs are determined by the spectrum?

The empty graphs!

- The converse graph? A and  $A^{\top}$  have the same spectrum.
- Diagonal switching ....

## Spectral characterizations and switching

Which unit gain graphs are determined by the spectrum?

The empty graphs!

- The converse graph? A and  $A^{\top}$  have the same spectrum.
- Diagonal switching ....

 $S^*AS$  and A have the same spectrum if  $S^*S = I$ .

Let S be a diagonal matrix with units on the diagonal. If  $A_{\Gamma'} = S^* A_{\Gamma} S$ , then we call  $\Gamma$  and  $\Gamma'$  (diagonal) switching equivalent.

 $\Gamma$  and  $\Gamma'$  are called switching isomorphic if  $\Gamma'$  is switching equivalent to  $\Gamma$  or its converse, possibly after relabeling the vertices.



## Two eigenvalues

Eigenvalues  $\theta_1$  and  $\theta_2$  with multiplicities m and n-m.

$$A^2=aA+kI$$
, with  $a= heta_1+ heta_2$  and  $k=- heta_1 heta_2$ .

Diagonal: (underlying) graph is k-regular.

#### Two eigenvalues

Eigenvalues  $\theta_1$  and  $\theta_2$  with multiplicities m and n-m.

$$A^2 = aA + kI$$
, with  $a = \theta_1 + \theta_2$  and  $k = -\theta_1\theta_2$ .

Diagonal: (underlying) graph is k-regular.

$$\theta_1 = \sqrt{rac{k(n-m)}{m}} \ \ ext{and} \ \ heta_2 = -\sqrt{rac{km}{n-m}}.$$

 $a \le n-2$  with equality if and only if  $\Psi$  "is" a complete graph: all triangles must have gain 1.

This also characterizes the case m = 1 (for  $a \ge 0$ ).

[Cvetković] coclique upper bound m follows from interlacing



# Weighing matrices (a = 0)

The case a = 0:  $A^2 = kI$ .

A complex unit weighing matrix W satisfies  $WW^* = kI$ .

"Graphical weighing matrices" (Hermitian with constant diagonal), e.g.,

$$W = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & i & -i \\ 1 & -i & 0 & i \\ 1 & i & -i & 0 \end{bmatrix}.$$

"Bipartite incidence graph" 
$$A = \begin{bmatrix} 0 & W \\ W^* & 0 \end{bmatrix}$$

Many examples!



# The Fano plane $(a \notin \mathbb{Z})$

From the incidence matrix of the Fano plane:

$$A = -\frac{1}{\sqrt{8}} cycl(0 \ 1 + i\sqrt{7} \ 1 + i\sqrt{7} \ 1 - i\sqrt{7} \ 1 + i\sqrt{7} \ 1 - i\sqrt{7} \ 1 - i\sqrt{7})$$

$$A^2 = \frac{1}{\sqrt{2}}A + 6I$$

$$\theta_1 = 2\sqrt{2}, \ \theta_2 = -\frac{3}{2}\sqrt{2}, \ m = 3.$$

## Signed graphs

Undirected graphs with two eigenvalues must be complete graphs

Signed 
$$T(5)$$
 with  $\theta_1 = 3$ ,  $\theta_2 = -2$ ,  $m = 4$ .



[Ramezani 2018] Signed triangular graphs with two eigenvalues

## Signed digraphs

(Signed) digraph on GQ(2,2) with  $\theta_1=$  3,  $\theta_2=-$ 2, m=6.



Gains are third roots of unity

Quotient of distance-regular antipodal 3-cover of GQ(2,2)



#### Representations in complex space

Above examples have nice representations by lines in complex space  $\mathbb{C}^m$ .

$$I + \theta_{\min}^{-1} A = N^* N$$

Gram matrix of Hermitian inner products of n unit vectors in  $\mathbb{C}^m$ .

Replacing the unit vectors by scalar (unit) multiples is diagonal switching.

Inner products are 0 or have absolute value  $-\theta_{\min}^{-1}$ .

## Representations in complex space

Above examples have nice representations by lines in complex space  $\mathbb{C}^m$ .

$$I + \theta_{\min}^{-1} A = N^* N$$

Gram matrix of Hermitian inner products of n unit vectors in  $\mathbb{C}^m$ .

Replacing the unit vectors by scalar (unit) multiples is diagonal switching.

Inner products are 0 or have absolute value  $-\theta_{\min}^{-1}$ .

Absolute bound [folklore]:

- $n \le m^2$  if underlying graph is complete
- $n \le m^2(m+1)/2$  if not

Proposition. If the underlying graph has eigenvalue  $-\frac{km}{n-m}$  with multiplicity  $m' \ge 0$ , then  $n \le m^2 + m'$ .



## Characterization and dismantlability

Proposition. A has two eigenvalues (or is empty)  $\Leftrightarrow NN^* = \frac{n}{m}I$ .

Examples: SIC-POVMs ( $n=m^2$ ), Mutually unbiased bases, tight frames

Dismantle into subgraphs like MUBs?

## Characterization and dismantlability

Proposition. A has two eigenvalues (or is empty)  $\Leftrightarrow NN^* = \frac{n}{m}I$ .

Examples: SIC-POVMs ( $n=m^2$ ), Mutually unbiased bases, tight frames

Dismantle into subgraphs like MUBs?

Proposition. If  $\Gamma$  has a subgraph  $\Gamma_1$  with two eigenvalues represented by the vectors of  $N_1$  (in the same complex space), then the remaining vectors  $(N_2)$  also represent a graph  $\Gamma_2$  with two eigenvalues (unless it is empty).

## Characterization and dismantlability

Proposition. A has two eigenvalues (or is empty)  $\Leftrightarrow NN^* = \frac{n}{m}I$ .

Examples: SIC-POVMs ( $n = m^2$ ), Mutually unbiased bases, tight frames

Dismantle into subgraphs like MUBs?

Proposition. If  $\Gamma$  has a subgraph  $\Gamma_1$  with two eigenvalues represented by the vectors of  $N_1$  (in the same complex space), then the remaining vectors  $(N_2)$  also represent a graph  $\Gamma_2$  with two eigenvalues (unless it is empty).

Proof: 
$$\frac{n}{m}I = NN^* = N_1N_1^* + N_2N_2^* = \frac{n_1}{m}I + N_2N_2^*$$
.

Examples: Mutually Unbiased Bases

A (maximal) *m*-coclique corresponds to an orthonormal basis of  $\mathbb{C}^m$ .



#### Multiplicity at most 3

#### Theorem

Any connected two-eigenvalue gain graph with a multiplicity at most 3 and  $a \ge 0$  is switching isomorphic to one of the gain graphs in below table.

| m | Graph                      | Order | k     | DS | Graph                                | Order | k | DS |
|---|----------------------------|-------|-------|----|--------------------------------------|-------|---|----|
| 1 | Kn                         | n     | n — 1 | *  |                                      |       |   |    |
| 2 | $IG(W_2)$                  | 4     | 2     | *  | $\mathit{K}_{2,2,2}^{(\gamma)}$ MUBs | 6     | 4 | *  |
| 2 | $W_4$                      | 4     | 3     | *  | 2,2,2                                |       |   |    |
| 3 | $IG(W_3)$                  | 6     | 3     | *  | 3 MUBs                               | 9     | 6 | *  |
|   | $T_6^{(\times)}$           | 6     | 4     |    | SICPOVM                              | 9     | 8 | *  |
|   | $\check{ETF}$ , $Donut(z)$ | 6     | 5     |    | 4 MUBs                               | 12    | 9 | *  |
|   | Fano                       | 7     | 6     | *  |                                      |       |   |    |

Table: A star in the DS column indicates that any cospectral gain graph is switching isomorphic.



#### Valency at most 4

#### **Theorem**

Any connected two-eigenvalue gain graph with degree at most 4 and  $a \ge 0$  is switching isomorphic to one of the gain graphs in below table.

| k | Graph                 | Order | m | DS | k | Graph                  | Order          | m | DS |
|---|-----------------------|-------|---|----|---|------------------------|----------------|---|----|
| 2 | <i>K</i> <sub>3</sub> | 3     | 1 | *  |   | K <sub>5</sub>         | 5              | 1 | *  |
| 2 | $IG(W_2)$             | 4     | 2 | *  |   | $K_{2,2,2}^{(\gamma)}$ | 6              | 2 | *  |
|   |                       |       |   |    |   | $ND(W_4)$              | 8              | 4 |    |
|   |                       |       |   |    | 4 | $IG(W_5)$              | 10             | 5 |    |
| 3 | $K_4$                 | 4     | 1 | *  |   | $ND(IG(W_3))$          | 12             | 6 |    |
|   | $W_4$                 | 4     | 2 | *  |   | $IG(W_7)$              | 14             | 7 |    |
|   | $IG(W_3)$             | 6     | 3 | *  |   | $ND(ND(IG(W_2)))$      | 16             | 8 |    |
|   | $ND(IG(W_2))$         | 8     | 4 | *  |   | $T_{2t}^{(x)}$         | $2t, t \geq 4$ | t |    |

Table: A star in the DS column indicates that any connected, cospectral gain graph is switching isomorphic.

 $2W_4$  and  $ND(IG(W_2))$  are cospectral



## The Witting polytope

The Witting polytope in  $\mathbb{C}^4$  has 240 vertices occuring in 40 lines, meeting the absolute bound.

Take the 4 standard basis vectors along with

$$\begin{split} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & -\varphi^j & -\varphi^h \end{bmatrix}^\top, \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -\varphi^j & 0 & \varphi^h \end{bmatrix}^\top, \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \varphi^j & \varphi^h & 0 \end{bmatrix}^\top, \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & -\varphi^j & \varphi^h \end{bmatrix}^\top, \\ & \text{with } j, h \in \{0, 1, 2\}. \end{split}$$

Unit gain graph with spectrum  $\left\{9\sqrt{3}^{[4]}, -\sqrt{3}^{[36]}\right\}$ .

Underlying graph is the complement of GQ(3,3).

## The Witting polytope

The Witting polytope in  $\mathbb{C}^4$  has 240 vertices occuring in 40 lines, meeting the absolute bound.

Take the 4 standard basis vectors along with

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1 \ 0 \ -\varphi^j \ -\varphi^h \end{bmatrix}^\top, \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \ -\varphi^j \ 0 \ \varphi^h \end{bmatrix}^\top, \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \ \varphi^j \ \varphi^h \ 0 \end{bmatrix}^\top, \frac{1}{\sqrt{3}} \begin{bmatrix} 0 \ 1 \ -\varphi^j \ \varphi^h \end{bmatrix}^\top, \text{ with } j,h \in \{0,1,2\}.$$

Unit gain graph with spectrum  $\left\{9\sqrt{3}^{[4]},-\sqrt{3}^{[36]}\right\}$ .

Underlying graph is the complement of GQ(3,3).

Partition the 40 vectors into ten orthonormal bases: a spread.

"Dismantle": gain graphs with spectrum  $\{(t-1)\sqrt{3}^{[4]}, -\sqrt{3}^{[4(t-1)]}\}$ ,  $t \in \{2, \dots, 10\}$ .



#### More examples

Many interesting examples with m=5 from the reflection group ST33 Many interesting examples with m=6 from the Coxeter-Todd lattice Donut graphs (k=5)





#### The end

#### Many thanks to the organizers!







https://arxiv.org/abs/2105.09149