

Quasi-symmetric 2-(28, 12, 11) designs with an automorphism of order 5 *

Renata Vlahović Kruc

(joint work with Vedran Krčadinac)

Combinatorial Designs and Codes Rijeka, 2021

July 15, 2021

* This work has been supported by Croatian Science Foundation under project 9752.

Renata Vlahović Kruc

Quasi-symmetric 2-(28, 12, 11) designs with an automorphism of order 5

Definition.

A 2- (v, k, λ) design is a set of v points together with a collection of k-element subsets called blocks such that every pair of points is contained in exactly λ blocks.

For a 2- (v, k, λ) design we denote by *b* the **total number of blocks**, and by *r* the **number of blocks through any point**:

$$b = \lambda \cdot \frac{\binom{v}{t}}{\binom{k}{t}} \qquad \qquad r = \lambda \cdot \frac{\binom{v-1}{t-1}}{\binom{k-1}{t-1}}$$

The numbers v, k, λ , b and r are **parameters** of the design.

Definition.

A design is **quasi-symmetric** if any two blocks intersect in either x or y points, for non-negative integers x < y.

The numbers x and y are called **intersection numbers**.

- Any symmetric 2-design (v = b) is quasi-symmetric with $x = \lambda$ and y is arbitrary.
- Any Steiner 2-design ($\lambda = 1$) is quasi-symmetric with x = 0 and y = 1.

< E >

M. S. Shrikhande, *Quasi-symmetric designs*, in: *The Handbook of Combinatorial Designs*, *Second Edition* (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 578–582.

Table An updated table of exceptional quasi-symmetric designs with $2k \le v \le 70$. References not given here can be found in [2049].

No.	v	k	λ	Т	b	\boldsymbol{x}	\boldsymbol{y}	Existence	Ref.
1	19	7	7	21	57	1	3	No	[1674]
2	19	9	16	36	76	3	5	No	
3	20	10	18	38	76	4	6	No	
4	20	8	14	38	95	2	4	No	
5	21	9	12	30	70	3	5	No	[410]
6	21	8	14	40	105	2	4	No	[410]
7	21	6	4	16	56	0	2	Yes(1)	[2044]
8	21	7	12	40	120	1	3	Yes(1)	[2044]
9	22	8	12	36	99	2	4	No	
10	22	6	5	21	77	0	2	Yes(1)	
11	22	7	16	56	176	1	3	Yes(1)	[2044]
12	23	7	21	77	253	1	3	Yes(1)	
13	24	8	7	23	69	2	4	No	
14	28	7	16	72	288	1	3	No	[2044]
15	28	12	11	27	63	4	6	$Yes(\geq 8784)$	1236, 1379, 2044, 710

< E >

1

2-(28, 12, 11) **QSD** with x = 4 and y = 6

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

■ the first known 2-(28, 12, 11) QSDs were constructed as derived designs of symplectic symmetric 2-(64, 28, 12) designs → SDP designs
W. M. Kantor, Symplectic groups, symmetric designs, and line ovals. I. Algebra 33 (1975)

W. M. Kantor, *Symplectic groups, symmetric designs, and line ovals*, J. Algebra **33** (1975), 43–58.

Definition.

A symmetric 2- (v, k, λ) design (v = b) is an SDP design if the symmetric difference of any three blocks is either a block or the complement of a block.

four symmetric 2-(64, 28, 12) SDP desings yield four quasi-symmetric 2-(28, 12, 11) SDP design as derived design
 D. Jungnickel, V. D. Tonchev, On symmetric and quasi-symmetric designs with the symmetric difference property and their codes, J. Combin. Theory Ser. A 59 (1992), no. 1,

40-50.

イヨトイヨト

■ 2-(28, 12, 11) QSDs were classified with an automorphism of order 7 without fixed points and blocks ~> 246 QSD

Y. Ding, S. Houghten, C. Lam, S. Smith, L. Thiel, and V. D. Tonchev, *Quasi-symmetric* 2-(28, 12, 11) *designs with an automorphism of order* 7, J. Combin. Des. **6** (1998), no. 3, 213-223.

the number of 2-(28, 12, 11) QSDs was increased to 58891 using the Kramer-Mesner method adopted for the construction of quasi-symmetric designs with prescribed automorphism groups and a direct construction of quasi-symmetric designs based on Hadamarad matrices and mutually orthogonal Latin squares

V. Krčadinac, R. Vlahović, *New quasi-symmetric designs by the Kramer-Mesner method*, Discrete Math. **339** (2016), no. 12, 2884–2890.

2-(28, 12, 11) **QSD** with x = 4 and y = 6

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Aut	#	Aut	#	Aut	#	Aut	#	Aut	#
1451520	1	512	14	144	12	42	3	12	12908
10752	1	384	102	128	4745	40	2	10	28
4608	3	360	1	120	17	36	33	7	47
1920	4	320	4	96	26039	32	1299	3	172
1536	13	288	10	84	15	28	12	2	62
1344	4	256	258	80	372	24	360	1	9554
768	18	224	8	72	11	21	95		
672	8	192	652	64	110	20	26		
640	1	168	2	60	8	18	7		
576	12	160	564	48	1224	14	50		

Table: The distribution of the known 2-(28, 12, 11) QSDs by order of full automorphism group.

GOAL: to preform a complete classification of 2-(28, 12, 11) QSDs with an automorphism of order 5.

Let $\mathcal{V}_1, \ldots, \mathcal{V}_m$ and $\mathcal{B}_1, \ldots, \mathcal{B}_n$ be the **point**- and **block-orbits** of a 2- (v, k, λ) design with respect to a group of automorphism *G*.

Let
$$\nu_i = |\mathcal{V}_i|$$
 and $\beta_i = |\mathcal{B}_i|$: $\sum_{i=1}^m \nu_i = v$ and $\sum_{j=1}^n \beta_j = b$.

For $1 \leq i \leq m$ and $1 \leq j \leq n$ let

 $a_{ij} = |\{P \in \mathcal{V}_i \mid P \in B\}|.$

This number a_{ij} does not depend on the choice of B.

The matrix $A = [a_{ij}]$ has the following properties:

1. $\sum_{i=1}^{m} a_{ij} = k,$ 2. $\sum_{j=1}^{n} \frac{\beta_i}{\nu_i} a_{ij} = r,$ 3. $\sum_{j=1}^{n} \frac{\beta_j}{\nu_{i'}} a_{ij} a_{i'j} = \begin{cases} \lambda \nu_i, & \text{for } i \neq i', \\ \lambda(\nu_i - 1) + r, & \text{for } i = i'. \end{cases}$

A matrix with these properties is called an **orbit matrix** for 2- (v, k, λ) and G.

For a quasi-symmetric design with intersection numbers x and y, the matrix A has the additional properties

4.
$$\sum_{i=1}^{m} \frac{\beta_j}{\nu_i} a_{ij} a_{ij'} = \begin{cases} sx + (\beta_j - s)y, & \text{for } j \neq j', \ 0 \le s \le \beta_j, \\ sx + (\beta_j - 1 - s)y + k, & \text{for } j = j', \ 0 \le s < \beta_j. \end{cases}$$

An orbit matrix satisfying these equations is called good.

The construction based on orbit matrices consist of two steps:

- **1** Find all good orbit matrices *A* with properties 1.-4., up to rearrangements of rows and columns.
- 2 Indexing orbit matrices: refine each matrix A in all possible ways to an incidence matrix of a design.

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{1,m} & \cdots & a_{m,n} \end{bmatrix} \Rightarrow \begin{bmatrix} N_{1,1} & \cdots & N_{1,n} \\ \vdots & \ddots & \vdots \\ N_{1,m} & \cdots & N_{m,n} \end{bmatrix}$$

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Let α be an automorphism of order 5 of a 2-(28, 12, 11) designs with intersection numbers x = 4 and y = 6.

Lemma.

The automorphism α has three fix points and blocks.

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

3 . 3

-4

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Orbit matrices of type B_1 :

- 62 370 orbit matrices
- 198 good orbit matrices
- 3 449 non-isomorphic designs

Orbit matrices of type B_2 :

- 55 573 orbit matrices
- 241 good orbit matrices
- 28 247 non-isomorphic designs

Theorem.

There are exactly 31696 quasi-symmetric 2-(28, 12, 11) designs with intersection numbers x = 4, y = 6 and an automorphism of order 5.

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Aut	#	Aut	#	Aut	#	Aut	#
1451520	1	320	4	60	8	5	878
1920	4	160	564	40	2		
640	1	120	17	20	26		
360	1	80	372	10	29818		

Table: The distribution of 2-(28, 12, 11) QSDs with an automorphism of order 5 by order of full automorphism group.

Thank you for your attention!

Quasi-symmetric 2-(28, 12, 11) designs with an automorphism of order 5

3 . 3