A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Lifted MRD codes

Designs in polar spaces

Open questions

Linear Codes from q-analogues in Design Theory

Alfred Wassermann

Department of Mathematics, Universität Bayreuth, Germany

Combinatorial Designs and Codes — Rijeka — July 15, 2021

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs

Lifted MRD code

Designs in polar spaces

Open questions

1 Introduction

2 Majority logic decoding using combinatorial designs Designs Majority logic decoding Outline

3 Classical / geometric designs

4 Subspace designs

5 More *q*-analogues

q-analogues of group divisible designs Lifted MRD codes Designs in polar spaces

6 Open questions

Combinatorial designs

in Design Theor

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of grou divisible designs

Lifted MRD code

Designs in polar spaces

Open questions

- $0 \le t \le k \le v$: integers
- λ: non-negative integer
- V: set of v points
- B: collection of k-subsets (blocks) of V
- D = (V, B) is called a t-(v, k, λ) design on V if each t-subset of V is contained in exactly λ blocks.

t- (v, k, λ) design $\mathcal{D} = (V, \mathcal{B})$:

- $\#\mathcal{B} = \lambda {\binom{v}{t}}/{\binom{k}{t}}$
- every point $P \in V$ appears in $r = \lambda {\binom{v-1}{t-1}}/{\binom{k-1}{t-1}}$ blocks
- r is called replication number
- we will just consider simple designs

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Designs in polar

Open questions

Majority logic decoding and designs

Rudolph (1967), Ng (1970)

- Based on Reed (1954): First non-trivial majority logic decoding scheme
- Given: 2- (v, k, λ) design $\mathcal{D} = (V, \mathcal{B})$ with $V = \{0, 1, \dots, v 1\}$
- Characteristic vectors of *B* are the rows of a #*B* × *v* incidence matrix *H*_D between blocks and points of *D*
- Code C_D ≤ 𝔽^v_p: p-ary linear code of length v having parity-check matrix H_D

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of grou divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

Majority logic decoding and designs

Task

- Sent: $c = (c_0, c_1, \dots, c_{v-1}) \in C_{\mathcal{D}}$
- $H_{\mathcal{D}} \cdot (c_0, c_1, \dots, c_{v-1})^\top = 0$
- Error: $e = (e_0, e_1, \dots, e_{v-1})$
- Received:

$$y = (y_0, y_1, \dots, y_{v-1}) = c + e \mod p$$

• Decode y, i.e. find c

Decode y_0 :

- Assume point 0 to be in design blocks B_0, \ldots, B_{r-1} ,
- corresponding to rows h_0, \ldots, h_{r-1} of $H_{\mathcal{D}}$
- $0 = \sum_{j=0}^{v-1} h_{ij} c_j$ for $0 \le i < r$
- $c_0 = -h_{i0}^{-1} \sum_{j=1}^{v-1} h_{ij} c_j$ for $0 \le i < r$

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of grou

Lifted MRD code

Designs in polar spaces

Open questions

• r+1 equations give r+1 estimates for c_0 :

$$c_0^{(0)} = -h_{00}^{-1} \sum_{j=1}^{v-1} h_{0j} \cdot y_j \qquad (\text{mod } p)$$
$$c_0^{(1)} = -h_{10}^{-1} \sum_{j=1}^{v-1} h_{1j} \cdot y_j \qquad (\text{mod } p)$$

$$c_0^{(r-1)} = -h_{(r-1)0}^{-1} \sum_{j=1}^{\nu-1} h_{(r-1)j} \cdot y_j \tag{mod } p)$$

$$c_0^{(r)} = y_0$$
 (counted λ times)

- Majority decision: $c_0^{(0)}, \ldots, c_0^{(r)}
 ightarrow c_0$
- Each error spoils at most λ equations (for c_0)
- Requirement: $\# \operatorname{errors} \cdot \lambda < (r + \lambda)/2$

Decoding y_0

Majority logic decoding

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues q-analogues of group divisible designs

Lifted MRD code

Designs in pola spaces

Open questions

Remarks

- To be precise: One-step majority logic decoding
- In most cases, more than $\lfloor \frac{r+\lambda-1}{2\lambda} \rfloor$ errors can be corrected
- t-designs for t > 2: error analysis by Rahman, Blake (1975)
- $\lambda = 1$: orthogonal check equations

Applications

- Circuit is very easy to realize
- Still interesting: e.g. for nano-structure storage
- · Hardware implemention: only cyclic designs are interesting

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Lifted MRD codes

Designs in polar spaces

Open questions

Majority logic decodable codes with orthogonal check equations are closely connected to

Connections

- Linear locally repairable codes, Huang et. al. (2015)
- Private information retrieval (PIR) codes, Fazeli, Vardy, Yaakobi (2015)

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of gro divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

Performance of this decoder

Linear code $C_{\mathcal{D}}$:

- Length: v
- Dimension: dim $C_{\mathcal{D}} = v \operatorname{rank}_p H_{\mathcal{D}}$
- Majority logic decodes at least $\lfloor \frac{r+\lambda-1}{2\lambda} \rfloor$ errors
- #equations: r+1

Drawback:

In most cases, $C_{\mathcal{D}}$ will have dimension 0 or 1.

Theorem (Hamada)

Let $H_{\mathcal{D}}$ be the incidence matrix of a 2- (v, k, λ) design \mathcal{D} with replication number r, and let p be a prime.

• If $\operatorname{rank}_p H_{\mathcal{D}} < v - 1$, then p divides $r - \lambda$.

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric design

Subspace designs

More q-analogues

q-analogues of grou divisible designs

Lifted MRD codes

Designs in polar spaces

Open questions

Classical / geometric designs

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

- More *q*-analogue
- q-analogues of grou divisible designs

Lifted MRD code

Designs in pola spaces

Open questions

- prime power q
- $\mathcal{V} = \mathbb{F}_q^v$
- $\begin{bmatrix} \mathcal{V} \\ m \end{bmatrix}_q$: set of all *m*-dimensional subspaces of \mathcal{V} (*m*-subspaces)
- Gaussian coefficient:

$$\# \begin{bmatrix} \mathcal{V} \\ m \end{bmatrix}_q = \begin{bmatrix} v \\ m \end{bmatrix}_q = \frac{(q^v - 1)(q^{v-1} - 1)\cdots(q^{v-m+1})}{(q^m - 1)(q^{m-1} - 1)\cdots(q - 1)}$$

Finite geometry

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

- q-analogues of grou divisible designs
- Lifted MRD code

Designs in polar spaces

Open questions

Designs from projective geometry

• Let
$$q = p^f$$
 and $2 \leq k < v$

- $\mathcal{V} = \mathbb{F}_q^v$
- Classical / geometric design $\mathcal{G} = (V, \mathcal{B})$ [Bose (1939)]:
 - $V = \begin{bmatrix} \mathcal{V} \\ 1 \end{bmatrix}_q$
 - $\mathcal{B} = \begin{bmatrix} \mathcal{V} \\ k \end{bmatrix}_{q}$, i.e. all k-subspaces in \mathcal{V}
 - G: combinatorial design with parameters

$$2 \cdot \begin{pmatrix} v \\ 1 \end{bmatrix}_q, \begin{bmatrix} k \\ 1 \end{bmatrix}_q, \begin{bmatrix} v - 2 \\ k - 2 \end{bmatrix}_q)$$

•
$$\lambda = \begin{bmatrix} v-2\\ k-2 \end{bmatrix}_q$$
, $r = \lambda \frac{ \begin{bmatrix} v-1\\ 1 \end{bmatrix}_q }{ \begin{bmatrix} k-1\\ 1 \end{bmatrix}_q }$

• Most interesting for majority logic decoding:

t = k = 2 ($\Rightarrow \lambda = 1$, i.e. orthogonal checks)

Suggested by Rudolph (1967)

A. Wassermann

Classical /

Theorem (Hamada (1973))

The p-rank of G is

$$\sum_{s_0} \dots \sum_{s_{f-1}} \prod_{j=0}^{f-1} \sum_{i=0}^{L(s_{j+1},s_j)} (-1)^i \binom{v}{i} \binom{v-1+s_{j+1}p-s_j-ip}{v-1}$$

•
$$s_f = s_0$$

•
$$k \le s_j \le v$$
 and $0 \le s_{j+1}p - s_j \le v(p-1)$
• $L(s_{j+1}, s_j) = \lfloor (s_{j+1}p - s_j)/p \rfloor$

 $L(s_{j+1}, s_j) = \lfloor (s_{j+1}p \rfloor$ $s_j)/p_{\perp}$

p-rank of classical designs

Hamada conjecture

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of grou divisible designs

Lifted MRD codes

Designs in polar spaces

Open questions

Conjecture: Hamada (1973)

Among the designs with the same parameters as the classical designs, the classical designs have minimal *p*-rank.

Tonchev (1986)

There are other designs having the same p-rank as the classical designs.

The codes

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group

Lifted MRD codes

Designs in polar spaces

Open questions

Codes from classical designs

affine case:

- Euclidean Geometry codes
- p = 2: Reed-Muller codes

projective case:

- Projective Geometry codes
- p = 2: subcodes of punctured Reed-Muller codes

- Incidence matrices in affine spaces give closely related codes
- Since Rudolph (1967), codes from incidence matrices of various structures in finite geometry have been studied.
- Assmus / Key: Designs and their codes (1992)
- See e.g. Lavrauw, Storme, Van de Voorde (2008)

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of grou divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

Subspace designs

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs

Designs in polar spaces

Open questions

A pair $\mathcal{D} = (\mathcal{V}, \mathcal{B})$ is called $t\text{-}(v, k, \lambda)_q$ subspace design if

- $\mathcal{V} = \mathbb{F}_q^v$
- $\mathcal{B} \subseteq {[{\mathcal{V}} \atop k]}_q$: blocks, ${[{\mathcal{V}} \atop 1]}_q$: points
- every $t\text{-dimensional subspace }T\in {V\brack t}_q$ is contained in exactly λ blocks of $\mathcal B$
- $\mathcal{B} = \begin{bmatrix} \mathcal{V} \\ k \end{bmatrix}_q$: complete design

Subspace designs

q-analogs of designs

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs

Lifted MRD code

Designs in pola spaces

Open questions

History of subspace designs

- Introduced by Ray-Chaudhuri, Cameron, Delsarte in the early 1970s
- First nontrivial subspace design for $t \ge 2$: Thomas (1987)
- Many computer constructions: Braun, Kerber, Laue (2005)
- Nontrivial q-Steiner systems (i.e. $\lambda = 1$): Braun, Etzion, Östergård, Vardy, W. (2013)
- Recent survey:

Greferath, Pavčević, Silberstein, Vázquez-Castro: Network Coding and Subspace Designs (2018)

Necessary conditions

A. Wassermann

Introduction

- Majority logic decoding usin combinatorial designs
- Designs
- Majority logic decoding
- Classical / geometric designs

Subspace designs

- More *q*-analogues *q*-analogues of group divisible designs Lifted MRD codes
- Designs in pola spaces
- Open questions

• Necessary conditions for t- $(v, k, \lambda)_q$:

$$\lambda_i = \lambda \frac{{{v-i}\brack t-i}_q}{{{k-i}\brack t-i}_q} \in \mathbb{Z} \quad \text{for } i = 0, \dots, t$$

- $\#\mathcal{B} = \lambda_0 = \lambda \frac{\begin{bmatrix} v \\ t \end{bmatrix}_q}{\begin{bmatrix} k \\ t \end{bmatrix}_q}$
- $r = \lambda_1 = \lambda \frac{{\binom{v-1}{1}}_q}{{\binom{k-1}{1}}_q}$
- Complete design: $\lambda_{\max} = \begin{bmatrix} v-t \\ k-t \end{bmatrix}_q$

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group

Lifted MRD code

Designs in polar spaces

Open questions

Known subspace designs

• $1-(v, k, 1)_q$ with $k \mid v$: spreads

• Thomas (1987): 2- $(v, 3, 7)_2$ for $v \ge 7$ and $\pm 1 \equiv v \pmod{6}$

• Suzuki (1989): 2- $(v, 3, q^2 + q + 1)_q$ for $v \ge 7$ and $\pm 1 \equiv v \pmod{6}$

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs

Lifted MRD cod

Designs in pola spaces

Open questions

Known subspace designs

computer constructions

Braun, Kerber, Laue (2005), S. Braun (2010)

t - $(v, k, \lambda)q$	G	λ_{\max}	λ
3 - $(8, 4, \lambda)_2$	$\langle \sigma, \phi^2 \rangle$	31	11, 15
${\scriptstyle 2\text{-}(10,3,\lambda)_2}$	$\langle \sigma, \phi \rangle$	255	15, 30, 45, 60, 75, 90, 105, 120
$2-(9, 4, \lambda)_2$	$\langle \sigma, \phi \rangle$	2667	$\begin{array}{c} 21, 63, 84, 126, 147, 189, 210, 252, 273, 315, \\ 336, 378, 399, 441, 462, 504, 525, 567, 576, 588, \\ 630, 651, 693, 714, 756, 777, 819, 840, 882, 903, \\ 945, 966, 1008, 1029, 1071, 1092, 1134, 1155, \\ 1197, 1218, 1260, 1281, 1323 \end{array}$
2 - $(9, 3, \lambda)_2$	$\langle \sigma, \phi^3 \rangle$	127	21, 22, 42, 43, 63
$2\text{-}(8,4,\lambda)_2$	$\langle \sigma, \phi^2 \rangle$	651	21, 35, 56, 70, 91, 105, 126, 140, 161, 175, 196, 210, 231, 245, 266, 280, 301, 315
$(2-(8, 3, \lambda)_2)$	$\langle \sigma \rangle$	63	21
$2-(7, 3, \lambda)_2$	$\langle \sigma \rangle$	31	3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
2 - $(6, 3, \lambda)_2$	$\langle \sigma^7 \rangle$	15	3, 6

 σ : Singer cycle, ϕ : Frobenius automorphism

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs Lifted MRD codes

Designs in pola spaces

Open questions

Subspace designs \rightarrow combinatorial designs

Three types:

$$2\text{-}(v,k,\lambda)_q \rightarrow \begin{cases} 2\text{-}(\begin{bmatrix} v\\1 \end{bmatrix}_q, \begin{bmatrix} k\\1 \end{bmatrix}_q, \lambda) & \text{projective case} \\ 2\text{-}(q^{v-1}, q^{k-1}, \lambda) & \text{affine case} \\ 3\text{-}(q^v, q^k, \lambda), & q = 2 \quad (*) \end{cases}$$

Resulting codes

- All three types of combinatorial designs give majority logic decodable codes
- Here, we'll focus on the projective case

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

- More *q*-analogues *q*-analogues of group divisible designs
- Lifted MRD code

Designs in pola spaces

Open questions

Subspace designs \rightarrow combinatorial designs

projective case

• A 2- $(v, k, \lambda)_q$ subspace design is a

$$2\text{-}(\begin{bmatrix} v\\1 \end{bmatrix}_q, \begin{bmatrix} k\\1 \end{bmatrix}_q, \lambda)$$

combinatorial design

• The classical / geometric designs are the complete subspace designs, i.e. have maximum possible λ , λ_{max}

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs Lifted MRD codes

spaces

Open questions

Subspace designs vs. classical designs

classical design \mathcal{G}

- $2 (v, k, \lambda_{\max})_q$
- incidence matrix $H_{\mathcal{G}}$

subspace design ${\mathcal D}$

•
$$2 - (v, k, \lambda)_q$$

• incidence matrix $H_{\mathcal{D}}$

Observation:

The rows of $H_{\mathcal{D}}$ are a subset of the rows of $H_{\mathcal{G}}$

$$\operatorname{rank}_p H_{\mathcal{D}} \leq \operatorname{rank}_p H_{\mathcal{G}} \quad \text{ and } \quad C_{\mathcal{D}} \geq C_{\mathcal{G}}$$

So far: $C_{\mathcal{D}} = C_{\mathcal{G}}$ for all tested examples (which are few)

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs Lifted MRD codes

Designs in polar spaces

Open questions

Subspace designs vs. classical designs

•
$$r_{\mathcal{D}} = \lambda_{\left[\begin{smallmatrix} v-1\\ 1\\ 1 \end{smallmatrix}\right]_q}^{\left[\begin{smallmatrix} v-1\\ 1\\ 1 \end{smallmatrix}\right]_q} \qquad \qquad r_{\mathcal{G}} = \lambda_{\max} \frac{\left[\begin{smallmatrix} v-1\\ 1\\ 1 \end{smallmatrix}\right]_q}{\left[\begin{smallmatrix} k-1\\ 1\\ 1 \end{smallmatrix}\right]_q}$$

Dela Cruz, W. (2021):

- Length of $C_{\mathcal{D}}$, $C_{\mathcal{G}}$: $\begin{bmatrix} v \\ 1 \end{bmatrix}_q$
- Dimension: $\dim C_{\mathcal{D}} \geq \dim C_{\mathcal{G}}$
- Majority logic decodes at least

$$\lfloor \frac{r_{\mathcal{D}} + \lambda - 1}{2\lambda} \rfloor = \lfloor \frac{r_{\mathcal{G}} + \lambda_{\max} - 1}{2\lambda_{\max}} \rfloor$$

errors

- # equations: $r_{\mathcal{D}} + 1 \leq r_{\mathcal{G}} + 1$
- Suzuki family $2 \cdot (v, 3, q^2 + q + 1)_q$ gives an exponential improvement in the # equations compared to the geometric designs

A. Wassermann

Introduction

Majority logi decoding usir combinatoria designs

Designs

decoding

Classical / geometric design

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs Lifted MRD codes

Designs in pola spaces

Open questions

Subspace designs decoders for q = 2

v	$_{k}$	λ_{known}	$\lambda_{ m min}$	$\lambda_{ m max}$	r	$(n, dim, l)_2$	$r_{\rm max}/r$
3	2	1	1	1	3	(7, 3, 1)	
4	2	1	1	1	7	(15, 4, 3)	
4	3	3	3	3	7	(15, 10, 1)	
5	2	1	1	1	15	(31, 5, 7)	
5	3	7	7	7	35	(31, 15, 2)	
5	4	7	7	7	15	(31, 25, 1)	
6	2	1	1	1	31	(63, 6, 15)	
6	3	3	3	15	31	(63, 21, 5)	5.0
7	2	1	1	1	63	(127, 7, 31)	
7	3	3	1	31	63	(127, 28, 10)	10.3
7	4	15	5	155	135	(127, 63, 4)	10.3
7	5	155	155	155	651	(127, 98, 2)	
7	6	31	31	31	63	(127, 119, 1)	
8	2	1	1	1	127	(255, 8, 63)	
8	3	21	21	63	889	(255, 36, 21)	3.0
8	4	7	7	651	127	(255, 92, 9)	93.0
8	5	465	465	1395	3937	(255, 162, 4)	3.0

Subspace designs decoders for q=2

Linear Codes from *q*-analogues in Design Theory

A. Wassermann

Introduction

Majority logic decoding usin combinatorial designs

Majority logi decoding

Classical / geometric design

Subspace designs

More *q*-analogues *q*-analogues of group divisible designs Lifted MRD codes Designs in polar spaces

Open questions

v	k	λ_{known}	$\lambda_{ m min}$	$\lambda_{ m max}$	r	$(n, dim, l)_2$	$r_{\rm max}/r$
9	2	1	1	1	255	(511, 9, 127)	
9	3	7	1	127	595	(511, 45, 42)	18.1
9	4	21	7	2667	765	(511, 129, 18)	127.0
9	5	93	31	11811	1581	(511, 255, 8)	127.0
9	6	651	93	11811	5355	(511, 381, 4)	18.1
10	2	1	1	1	511	(1023, 10, 255)	
10	3	15	3	255	2555	(1023, 55, 85)	17.0
10	4	595	5	10795	43435	(1023, 175, 36)	18.1
10	5	765	15	97155	26061	(1023, 385, 17)	127.0
10	6	11067	93	200787	182427	(1023, 637, 8)	18.1
10	7	5715	1143	97155	46355	(1023, 847, 4)	17.0
11	2	1	1	1	1023	(2047, 11, 511)	
11	3	7	7	511	2387	(2047, 66, 170)	73.0
11	8	10795	10795	788035	86955	(2047, 1815, 4)	73.0
12	2	1	1	1	2047	(4095, 12, 1023)	
13	2	1	1	1	4095	(8191, 13, 2047)	
13	3	1	1	2047	1365	(8191, 91, 682)	2047.0
13	10	24893	24893	50955971	199485	(8191, 7813, 4)	2047.0

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues *q*-analogues of group

Lifted MRD code

Designs in polar spaces

Open questions

Codes from subspace designs

Summary

Subspace designs with small λ have small decoders (i.e. few equations) without losing error correction capability compared to codes from classical designs

Can we do better?

$$\# \mathsf{errors} \cdot \lambda < (r+\lambda)/2 = \# \mathsf{equations}/2$$

Sufficient for majority logic decoding:

Incidence matrix between blocks $/\ensuremath{\left|}\xspace$ points of combinatorial structure with

- constant replication number of the points
- every pair of points appears in at most λ blocks

Desirable:

- Blocks are subspaces of $\mathbb{F}_q^v \to {\rm submatrix}$ of $H_{\mathcal{G}} \to {\rm Hamada}$ formula is involved
- Cyclic structure

Linear Codes from *q*-analogue in Design Theor

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

```
More q-analogues
q-analogues of group
divisible designs
Lifted MRD codes
```

Designs in polar spaces

Open questions

A. Wassermann

Introduction

Majority logic decoding usin combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Lifted MRD code

Designs in pola spaces

Open questions

More q-analogues

A. Wassermann

Candidates

Introduction

- Majority logic decoding using combinatorial designs
- Designs
- Majority logic decoding
- Classical / geometric designs
- Subspace designs

More q-analogues

- *q*-analogues of group divisible designs Lifted MRD codes
- Designs in polar spaces
- Open questions

- 1 q-analogues of group divisible designs
- 2 lifted MRD codes
- 3 designs in classical polar spaces

A. Wassermann

Introduction

- Majority logic decoding using combinatorial designs
- Designs
- Majority logic decoding
- Classical / geometric designs
- Subspace designs
- More q-analogues
- q-analogues of group divisible designs
- Lifted MRD code
- Designs in pola spaces
- Open questions

$q\mbox{-}{analogues}$ of group divisible designs

A *q*-analog of a group divisible design (*q*-GDD) with parameters $(v, g, k, \lambda)_q$ is a triple $(\mathcal{V}, \mathcal{G}, \mathcal{B})$, where

- \mathcal{G} is a partition of $\begin{bmatrix} \mathcal{V} \\ 1 \end{bmatrix}_q$ into *g*-subspaces (*g*-spread, the groups, $\#\mathcal{G} > 1$)
- \mathcal{B} is a family of k-subspaces (blocks) of \mathcal{V} such that every 2-dimensional subspace $L \in \begin{bmatrix} \mathcal{V} \\ 2 \end{bmatrix}_q$ occurs in exactly λ blocks or one spread element, but not both.

Remarks

- Introduced in Buratti, Kiermaier, Kurz, Nakić, W. (2019)
- $\bullet\,$ Blocks B are scattered subspaces with respect to spread ${\mathcal G}$

Replication number

•
$$r = \lambda \frac{{{{\begin{bmatrix} v - 1 \\ 1 \end{bmatrix}}_q - {\begin{bmatrix} g - 1 \\ 1 \end{bmatrix}}_q}}{{{\begin{bmatrix} k - 1 \\ 1 \end{bmatrix}}_q}}$$

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Lifted MRD code

Designs in pola spaces

Open questions

$q\text{-analogues of group divisible designs}_{\rm codes}$

Improved decoders

Using constructions from Buratti, Kiermaier, Kurz, Nakić, W. (2019):

\mathcal{D}	r	$q ext{-}GDD$	r	$[n, \dim, \ell]_2$
$2-(6,3,3)_2$	31	$(6, 2, 3, 2)_2$	20	$[63, 21, 5]_2$
$2 - (8, 3, 21)_2$	889	$(8, 2, 3, 2)_2$	84	$[255, 36, 21]_2$
$2 - (9, 3, 7)_2$	595	$(9, 3, 3, 2)_2$	168	$[511, 45, 42]_2$
$2 - (10, 3, 15)_2$	2555	$(10, 2, 3, 14)_2$	2380	$[1023, 55, 85]_2$

Burst error correction?

Errors in the same spread elements are treated independently

Lifted MRD codes

Rank distance codes - MRD codes

A. Wassermann

Majority logic decoding using combinatorial designs

- Designs
- Majority logic decoding
- Classical / geometric designs
- Subspace designs
- More q-analogues
- q-analogues of group divisible designs
- Lifted MRD codes
- Designs in polar spaces
- Open questions

- $\mathbb{F}_q^{k imes m}$, $k \le m$
- Rank distance: for $A, B \in \mathbb{F}_q^{k \times m}$: $d_r(A, B) = \operatorname{rank}(A B)$
- Rank metric code: $\mathcal{C} \subseteq (\mathbb{F}_q^{k \times m}, d_r)$
- $d_r(\mathcal{C}) = \min\{d_r(A, B) \mid A \neq B \in \mathcal{C}\}$

- Singleton bound: $\#C \leq q^{m(k-d_r+1)}$
- Equality can always be attained (Gabidulin codes): Maximum rank distance codes MRD codes
- Delsarte (1978), Gabidulin (1985)

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of group divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

Kötter, Kschischang (2008):

- $C_r \subseteq (\mathbb{F}_q^{k \times m}, d_r)$ MRD code
- v = k + m, $\mathcal{V} = \mathbb{F}_q^v$
- $A \in \mathcal{C}_r$: $\langle (I \mid A) \rangle$, row space
- Subspace code $\mathcal{C} = \{ \langle (I \mid A) \rangle \leq \mathcal{V} \mid A \in \mathcal{C}_r \}$

•
$$#\mathcal{C} = q^{m(k-d_r+1)}$$

• Subspace distance: $d_s(\mathcal{C}) = 2d_r(\mathcal{C}_r)$

Lifted MRD codes

subspace codes

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

Lifted $(k \times m, d_r)$ MRD code $\mathcal{C}_{\text{transversal design}}$

Etzion, Silberstein (2013):

- Define $S := \langle (0 \mid I) \rangle$
- Each $(k d_r + 1)$ -subspace of \mathcal{V} , disjoint from S, is contained in exactly one codeword of \mathcal{C}
- Let $0 \leq i \leq k d_r 1$. Each $(k d_r i)$ -subspace of \mathcal{V} , disjoint from S, is contained in exactly $q^{m(i+1)}$ codewords of \mathcal{C}
- The codewords of $\mathcal C$ form the blocks of a transversal design ${\rm TD}_\lambda({k\brack 1}_q,q^m)$ with $\lambda=q^{m(k-d_r-1)}$
- $r = q^{m(k-d_r)}$
- $\bullet\, \rightarrow$ take incidence matrix of TD as parity-check matrix
- See also Lavauzelle (2018): TDs as PIR codes

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

• Etzion, Silberstein (2013): $q^m \leq \operatorname{rank}_2 H_{\mathcal{C}} \leq {k \brack 1}_q (q^m - 1) + 1$ if q even.

• Kiermaier, Kurz, W. (2021+): rank_p $H_{\mathcal{C}} \leq \underbrace{\operatorname{rank} H_{\mathcal{G}}}_{\operatorname{rank} H_{\mathcal{G}}} - \begin{bmatrix} m \\ 1 \end{bmatrix}_{q}$

Hamada formula

Example:

- $\mathbb{F}_2^{3\times 4}$: k = 3, m = 4 with $d_r = 2$.
- $\mathsf{TD}_1(7, 16)$, $n = 112 \rightarrow \mathsf{orthogonal}$ checks
- Etzion, Silberstein (2013): $16 \leq \operatorname{rank}_2 H_{\mathcal{C}} \leq 106$
- Kiermaier, Kurz, W. (2021+):
 - Bound: rank₂ $H_{\mathcal{C}} \leq 84$
 - Computer enumeration: there are 33 MRD codes
 - Rank spectrum: $68 \leq \operatorname{rank}_2 H_{\mathcal{C}} \leq 83$
 - Rank 68: [112, 44, 24]₂ code
 - Meets known lower bound
 - One-step majority logic decoding corrects 8 errors

Bounds on the rank of $H_{\mathcal{C}}$

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of grou divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

Finite classical polar spaces

type	v	rank
$Q^{-}(2n+1,q)$	2n + 2	n
Q(2n,q)	2n + 1	n
$Q^+(2n+1,q)$	2n + 2	n+1
W(2n+1,q)	2n + 2	n+1
$H(2n,q^2)$	n+1	n
$H(2n+1,q^2)$	n+2	n+1

Designs in polar spaces

Definition

A family of generators (subspaces of maximal rank k) in a finite polar space Q is called *t*-design if there exists a positive integer λ such that every *t*-dimensional subspace of Q is contained in exactly λ blocks. (Dimensions are vector space dimensions)

Designs in polar spaces

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More q-analogues

q-analogues of group divisible designs

Designs in pola spaces

Open questions

Known results

- Segre (1967): λ -regular system with regard to t-1-spaces
- Trivial designs in Q⁺ for all t: latins and greeks
- First nontrivial 2-design: Q(6,3), λ = 2 [De Bruyn and Vanhove (2013)]
- Lansdown (2020): more examples for q = 3, 5
- See also Cossidente, Marino, Pavese, Smaldore (2021)

Kiermaier, Schmidt, W. (2021+)

•
$$\lambda_i = \lambda \frac{{n \brack t}_{\mathcal{Q}} {k \brack q}}{{n \brack i}_{\mathcal{Q}} {k \brack q}}$$

•
$$r = \lambda_1$$

• ≥ 100 computer constructions for q = 2, 3 and t = 2

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogue

q-analogues of group divisible designs

Designs in polar spaces

Open questions

$2\text{-}\mathsf{designs}$ in polar spaces

Codes from designs in polar spaces

First observations

- Design blocks are subspaces in an ambient vector space $\mathcal V$
- Hamada formula somehow involved in rank $H_{\mathcal{D}}$

Examples

\mathcal{D} : $(v,k,\lambda)_\mathcal{Q}$	$rank_{H_\mathcal{D}}$	$[n,k,d]_2$	r	ℓ
$(6,3,1)_{Q^+}$	11	$[35, 24, 4]_2$	3	1
$(8, 4, 3)_{Q^+}$	43	$[135, 92]_2$	15	2
$(10, 5, 6)_{Q^+}$	187	$[527, 340]_2$	54	4
$(11, 5, 21)_Q$	517	$[1023, 506]_2$	357	8
$(8, 4, 5)_W$	135	$[255, 120]_2$	45	4
$(8, 3, 2)_{O^{-}}$	84	$[119, 35, 24]_2$	18	4
$(10, 4, 9)_{O^{-}}$	330	$[495, 165]_2$	153	8

Open questions

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of grou divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

Subspace designs, q-GDDs

• Does $\dim C_{\mathcal{D}} = \dim C_{\mathcal{G}}$ always hold?

Lifted MRD codes

• Role of d_r for rank H_C ? (e.g. 83 vs. 84)

Designs in polar spaces

• Bounds for rank $H_{\mathcal{D}}$?

Applications

- Efficient error detection? (resolvable configurations?)
- Only information bits need to be decoded. Can this be exploited?

in Design Theor

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of grou divisible designs

Lifted MRD codes

Designs in pola spaces

Open questions

q-analogues of design configurations enable the use of the Hamada formula and lead to interesting linear codes

Thank you for listening !

Example

A. Wassermann

Introduction

Majority logic decoding using combinatorial designs

Designs

Majority logic decoding

Classical / geometric designs

Subspace designs

More *q*-analogues

q-analogues of group divisible designs

Lifted MRD codes

Designs in polar spaces

Open questions

$\mathbb{F}_2^{2\times 2}$: k=m=2 with $d_r=2$.

 $\mathcal{C} = \{ \langle \binom{1000}{0100} \rangle, \langle \binom{1010}{0101} \rangle, \langle \binom{1011}{0110} \rangle, \langle \binom{1001}{0111} \rangle \} \text{ lifted MRD code}$

 $\langle \binom{1000}{0100} \rangle = \{ (10|00), (01|00), (11|00) \}$

	$\begin{bmatrix} \mathcal{V} \\ 1 \end{bmatrix}_2 \setminus \begin{bmatrix} S \\ 1 \end{bmatrix}_2$											
		1	0			0	1			1	1	
	00	10	01	11	00	10	01	11	00	10	01	11
$\langle \begin{pmatrix} 1000\\ 0100 \end{pmatrix} \rangle$	1				1				1			
$\langle \begin{pmatrix} 1010\\ 0101 \end{pmatrix} \rangle$		1					1					1
$\langle \begin{pmatrix} 1011\\ 0110 \end{pmatrix} \rangle$				1		1					1	
$\langle \begin{pmatrix} 1001\\0111 \end{pmatrix} \rangle$			1					1		1		