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Combinatorial designs

• 0 ≤ t ≤ k ≤ v: integers
• λ: non-negative integer
• V : set of v points
• B: collection of k-subsets (blocks) of V
• D = (V,B) is called a t-(v, k, λ) design on V if

each t-subset of V is contained in exactly λ blocks.

t-(v, k, λ) design D = (V,B):
• #B = λ

(
v
t

)
/
(
k
t

)
• every point P ∈ V appears in r = λ

(
v−1
t−1
)
/
(
k−1
t−1
)
blocks

• r is called replication number
• we will just consider simple designs
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Majority logic decoding and designs

Rudolph (1967), Ng (1970)
• Based on Reed (1954): First non-trivial majority logic decoding
scheme
• Given: 2-(v, k, λ) design D = (V,B) with V = {0, 1, . . . , v − 1}
• Characteristic vectors of B are the rows of a #B × v incidence
matrix HD between blocks and points of D
• Code CD ≤ Fvp: p-ary linear code of length v having
parity-check matrix HD
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Majority logic decoding and designs

Task
• Sent: c = (c0, c1, . . . , cv−1) ∈ CD
• HD · (c0, c1, . . . , cv−1)> = 0
• Error: e = (e0, e1, . . . , ev−1)
• Received:

y = (y0, y1, . . . , yv−1) = c+ e mod p

• Decode y, i.e. find c

Decode y0:
• Assume point 0 to be in design blocks B0, . . . , Br−1,
• corresponding to rows h0, . . . , hr−1 of HD
• 0 =

∑v−1
j=0 hijcj for 0 ≤ i < r

• c0 = −h−1
i0
∑v−1
j=1 hijcj for 0 ≤ i < r
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Decoding y0

• r + 1 equations give r + 1 estimates for c0:

c
(0)
0 = −h−1

00

v−1∑
j=1

h0j · yj (mod p)

c
(1)
0 = −h−1

10

v−1∑
j=1

h1j · yj (mod p)

...

c
(r−1)
0 = −h−1

(r−1)0

v−1∑
j=1

h(r−1)j · yj (mod p)

c
(r)
0 = y0 (counted λ times)

• Majority decision: c(0)
0 , . . . , c(r)

0 → c0

• Each error spoils at most λ equations (for c0)
• Requirement: #errors · λ < (r + λ)/2
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Majority logic decoding

Remarks
• To be precise: One-step majority logic decoding
• In most cases, more than b r+λ−1

2λ c errors can be corrected
• t-designs for t > 2: error analysis by Rahman, Blake (1975)
• λ = 1: orthogonal check equations

Applications
• Circuit is very easy to realize
• Still interesting: e.g. for nano-structure storage
• Hardware implemention: only cyclic designs are interesting



Linear Codes
from q-analogues
in Design Theory

A. Wassermann

Introduction

Majority logic
decoding using
combinatorial
designs
Designs

Majority logic
decoding

Classical /
geometric designs

Subspace designs

More q-analogues
q-analogues of group
divisible designs

Lifted MRD codes

Designs in polar
spaces

Open questions

Connections

Majority logic decodable codes with orthogonal check equations are
closely connected to
• Linear locally repairable codes, Huang et. al. (2015)
• Private information retrieval (PIR) codes, Fazeli, Vardy, Yaakobi
(2015)
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Performance of this decoder

Linear code CD:
• Length: v
• Dimension: dimCD = v − rankpHD
• Majority logic decodes at least b r+λ−1

2λ c errors
• #equations: r + 1

Drawback:
In most cases, CD will have dimension 0 or 1.

Theorem (Hamada)
Let HD be the incidence matrix of a 2-(v, k, λ) design D with
replication number r, and let p be a prime.
• If rankpHD < v − 1, then p divides r − λ.
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Finite geometry

• prime power q
• V = Fvq
•
[V
m

]
q
: set of all m-dimensional subspaces of V (m-subspaces)

• Gaussian coefficient:

#
[
V
m

]
q

=
[
v

m

]
q

= (qv − 1)(qv−1 − 1) · · · (qv−m+1)
(qm − 1)(qm−1 − 1) · · · (q − 1)
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Designs from projective geometry

• Let q = pf and 2 ≤ k < v

• V = Fvq
• Classical / geometric design G = (V,B) [Bose (1939)]:

• V =
[V

1

]
q

• B =
[V

k

]
q
, i.e. all k-subspaces in V

• G: combinatorial design with parameters

2-(
[
v

1

]
q

,

[
k

1

]
q

,

[
v − 2
k − 2

]
q

)

• λ =
[

v−2
k−2

]
q
, r = λ

[v−1
1 ]

q

[k−1
1 ]

q

• Most interesting for majority logic decoding:

t = k = 2 (⇒ λ = 1, i.e. orthogonal checks)

• Suggested by Rudolph (1967)
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p-rank of classical designs

Theorem (Hamada (1973))
• The p-rank of G is

∑
s0

. . .
∑
sf−1

f−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i
(
v

i

)(
v − 1 + sj+1p− sj − ip

v − 1

)
• sf = s0

• k ≤ sj ≤ v and 0 ≤ sj+1p− sj ≤ v(p− 1)
• L(sj+1, sj) = b(sj+1p− sj)/pc
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Hamada conjecture

Conjecture: Hamada (1973)
Among the designs with the same parameters as the classical designs,
the classical designs have minimal p-rank.

Tonchev (1986)
There are other designs having the same p-rank as the classical
designs.
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The codes

Codes from classical designs

affine case:
• Euclidean Geometry
codes

• p = 2: Reed-Muller
codes

projective case:
• Projective Geometry
codes

• p = 2: subcodes of
punctured Reed-Muller
codes

• Incidence matrices in affine spaces give closely related codes
• Since Rudolph (1967), codes from incidence matrices of various
structures in finite geometry have been studied.
• Assmus / Key: Designs and their codes (1992)
• See e.g. Lavrauw, Storme, Van de Voorde (2008)
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Subspace designs
q-analogs of designs

A pair D = (V,B) is called t-(v, k, λ)q subspace design if
• V = Fvq
• B ⊆

[V
k

]
q
: blocks,

[V
1
]
q
: points

• every t-dimensional subspace T ∈
[V
t

]
q
is contained in exactly λ

blocks of B
• B =

[V
k

]
q
: complete design

1-(4, 2, 7)2 design
2-(4, 2, 1)2 design 1-(4, 2, 1)2 design
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History of subspace designs

• Introduced by Ray-Chaudhuri, Cameron, Delsarte in the early
1970s
• First nontrivial subspace design for t ≥ 2:

Thomas (1987)
• Many computer constructions:

Braun, Kerber, Laue (2005)
• Nontrivial q-Steiner systems (i.e. λ = 1):

Braun, Etzion, Östergård, Vardy, W. (2013)
• Recent survey:
Greferath, Pavčević, Silberstein, Vázquez-Castro:
Network Coding and Subspace Designs (2018)
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Necessary conditions

• Necessary conditions for t-(v, k, λ)q:

λi = λ

[
v−i
t−i
]
q[

k−i
t−i
]
q

∈ Z for i = 0, . . . , t

• #B = λ0 = λ
[vt]q
[kt]q

• r = λ1 = λ
[v−1

1 ]
q

[k−1
1 ]

q

• Complete design: λmax =
[
v−t
k−t
]
q
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Known subspace designs
families

• 1-(v, k, 1)q with k | v: spreads
• Thomas (1987):

2-(v, 3, 7)2 for v ≥ 7 and ±1 ≡ v (mod 6)
• Suzuki (1989):

2-(v, 3, q2 + q + 1)q for v ≥ 7 and ±1 ≡ v (mod 6)
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Known subspace designs
computer constructions

Braun, Kerber, Laue (2005), S. Braun (2010)

t-(v, k, λ)q G λmax λ

3-(8, 4, λ)2 〈σ, φ2〉 31 11, 15

2-(10, 3, λ)2 〈σ, φ〉 255 15, 30, 45, 60, 75, 90, 105, 120

2-(9, 4, λ)2 〈σ, φ〉 2667 21, 63, 84, 126, 147, 189, 210, 252, 273, 315,
336, 378, 399, 441, 462, 504, 525, 567, 576, 588,
630, 651, 693, 714, 756, 777, 819, 840, 882, 903,
945, 966, 1008, 1029, 1071, 1092, 1134, 1155,
1197, 1218, 1260, 1281, 1323

2-(9, 3, λ)2 〈σ, φ3〉 127 21, 22, 42, 43, 63

2-(8, 4, λ)2 〈σ, φ2〉 651 21, 35, 56, 70, 91, 105, 126, 140, 161, 175,
196, 210, 231, 245, 266, 280, 301, 315

2-(8, 3, λ)2 〈σ〉 63 21

2-(7, 3, λ)2 〈σ〉 31 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

2-(6, 3, λ)2 〈σ7〉 15 3, 6

σ: Singer cycle, φ: Frobenius automorphism
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Subspace designs → combinatorial designs

Three types:

2-(v, k, λ)q →


2-(
[
v
1
]
q
,
[
k
1
]
q
, λ) projective case

2-(qv−1, qk−1, λ) affine case
3-(qv, qk, λ), q = 2 (∗)

(∗): Etzion, Vardy (2011), Dela Cruz, W. (2021)

Resulting codes
• All three types of combinatorial designs give majority logic
decodable codes
• Here, we’ll focus on the projective case
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Subspace designs → combinatorial designs
projective case

• A 2-(v, k, λ)q subspace design is a

2-(
[
v

1

]
q

,

[
k

1

]
q

, λ)

combinatorial design
• The classical / geometric designs are the complete subspace
designs, i.e. have maximum possible λ, λmax
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Subspace designs vs. classical designs
part I

classical design G
• 2-(v, k, λmax)q
• incidence matrix HG

subspace design D
• 2-(v, k, λ)q
• incidence matrix HD

Observation:

The rows of HD are a subset of the rows of HG

=⇒

rankpHD ≤ rankpHG and CD ≥ CG

So far: CD = CG for all tested examples (which are few)
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Subspace designs vs. classical designs
part II

• rD = λ
[v−1

1 ]
q

[k−1
1 ]

q

rG = λmax
[v−1

1 ]
q

[k−1
1 ]

q

Dela Cruz, W. (2021):
• Length of CD, CG :

[
v
1
]
q

• Dimension: dimCD ≥ dimCG
• Majority logic decodes at least

brD + λ− 1
2λ c = brG + λmax − 1

2λmax
c

errors
• # equations: rD + 1 ≤ rG + 1
• Suzuki family 2-(v, 3, q2 + q + 1)q gives an exponential
improvement in the # equations compared to the geometric
designs



Linear Codes
from q-analogues
in Design Theory

A. Wassermann

Introduction

Majority logic
decoding using
combinatorial
designs
Designs

Majority logic
decoding

Classical /
geometric designs

Subspace designs

More q-analogues
q-analogues of group
divisible designs

Lifted MRD codes

Designs in polar
spaces

Open questions

Subspace designs decoders for q = 2
part I

v k λknown λmin λmax r (n, dim, l)2 rmax/r
3 2 1 1 1 3 (7, 3, 1)
4 2 1 1 1 7 (15, 4, 3)
4 3 3 3 3 7 (15, 10, 1)
5 2 1 1 1 15 (31, 5, 7)
5 3 7 7 7 35 (31, 15, 2)
5 4 7 7 7 15 (31, 25, 1)
6 2 1 1 1 31 (63, 6, 15)
6 3 3 3 15 31 (63, 21, 5) 5.0
7 2 1 1 1 63 (127, 7, 31)
7 3 3 1 31 63 (127, 28, 10) 10.3
7 4 15 5 155 135 (127, 63, 4) 10.3
7 5 155 155 155 651 (127, 98, 2)
7 6 31 31 31 63 (127, 119, 1)
8 2 1 1 1 127 (255, 8, 63)
8 3 21 21 63 889 (255, 36, 21) 3.0
8 4 7 7 651 127 (255, 92, 9) 93.0
8 5 465 465 1395 3937 (255, 162, 4) 3.0
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Subspace designs decoders for q = 2
part II

v k λknown λmin λmax r (n, dim, l)2 rmax/r
9 2 1 1 1 255 (511, 9, 127)
9 3 7 1 127 595 (511, 45, 42) 18.1
9 4 21 7 2667 765 (511, 129, 18) 127.0
9 5 93 31 11811 1581 (511, 255, 8) 127.0
9 6 651 93 11811 5355 (511, 381, 4) 18.1
10 2 1 1 1 511 (1023, 10, 255)
10 3 15 3 255 2555 (1023, 55, 85) 17.0
10 4 595 5 10795 43435 (1023, 175, 36) 18.1
10 5 765 15 97155 26061 (1023, 385, 17) 127.0
10 6 11067 93 200787 182427 (1023, 637, 8) 18.1
10 7 5715 1143 97155 46355 (1023, 847, 4) 17.0
11 2 1 1 1 1023 (2047, 11, 511)
11 3 7 7 511 2387 (2047, 66, 170) 73.0
11 8 10795 10795 788035 86955 (2047, 1815, 4) 73.0
12 2 1 1 1 2047 (4095, 12, 1023)
13 2 1 1 1 4095 (8191, 13, 2047)
13 3 1 1 2047 1365 (8191, 91, 682) 2047.0
13 10 24893 24893 50955971 199485 (8191, 7813, 4) 2047.0



Linear Codes
from q-analogues
in Design Theory

A. Wassermann

Introduction

Majority logic
decoding using
combinatorial
designs
Designs

Majority logic
decoding

Classical /
geometric designs

Subspace designs

More q-analogues
q-analogues of group
divisible designs

Lifted MRD codes

Designs in polar
spaces

Open questions

Codes from subspace designs

Summary
Subspace designs with small λ have small decoders (i.e. few
equations) without losing error correction capability compared to
codes from classical designs
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Can we do better?

#errors · λ < (r + λ)/2 = #equations/2

Sufficient for majority logic decoding:
Incidence matrix between blocks / points of combinatorial structure
with
• constant replication number of the points
• every pair of points appears in at most λ blocks

Desirable:
• Blocks are subspaces of Fvq → submatrix of HG → Hamada
formula is involved
• Cyclic structure
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More q-analogues
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Candidates

1 q-analogues of group divisible designs
2 lifted MRD codes
3 designs in classical polar spaces
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q-analogues of group divisible designs

A q-analog of a group divisible design (q-GDD) with parameters
(v, g, k, λ)q is a triple (V,G,B), where
• G is a partition of

[V
1
]
q
into g-subspaces

(g-spread, the groups, #G > 1)
• B is a family of k-subspaces (blocks) of V such that

every 2-dimensional subspace L ∈
[V

2
]
q

occurs in exactly λ
blocks or one spread element, but not both.

Remarks
• Introduced in Buratti, Kiermaier, Kurz, Nakić, W. (2019)
• Blocks B are scattered subspaces with respect to spread G

Replication number
• r = λ

[v−1
1 ]

q
−[g−1

1 ]
q

[k−1
1 ]

q
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q-analogues of group divisible designs
codes

Improved decoders
Using constructions from Buratti, Kiermaier, Kurz, Nakić, W. (2019):

D r q-GDD r [n, dim, `]2
2-(6, 3, 3)2 31 (6, 2, 3, 2)2 20 [63, 21, 5]2
2-(8, 3, 21)2 889 (8, 2, 3, 2)2 84 [255, 36, 21]2
2-(9, 3, 7)2 595 (9, 3, 3, 2)2 168 [511, 45, 42]2
2-(10, 3, 15)2 2555 (10, 2, 3, 14)2 2380 [1023, 55, 85]2

Burst error correction?
Errors in the same spread elements are treated independently
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Lifted MRD codes
Rank distance codes – MRD codes

• Fk×mq , k ≤ m
• Rank distance: for A,B ∈ Fk×mq : dr(A,B) = rank(A−B)
• Rank metric code: C ⊆ (Fk×mq , dr)
• dr(C) = min{dr(A,B) | A 6= B ∈ C}

• Singleton bound: #C ≤ qm(k−dr+1)

• Equality can always be attained (Gabidulin codes): Maximum
rank distance codes – MRD codes
• Delsarte (1978), Gabidulin (1985)
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Lifted MRD codes
subspace codes

Kötter, Kschischang (2008):
• Cr ⊆ (Fk×mq , dr) MRD code
• v = k +m, V = Fvq
• A ∈ Cr: 〈(I | A)〉, row space
• Subspace code C = {〈(I | A)〉 ≤ V | A ∈ Cr}
• #C = qm(k−dr+1)

• Subspace distance: ds(C) = 2dr(Cr)
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Lifted (k ×m, dr) MRD code C
transversal design

Etzion, Silberstein (2013):
• Define S := 〈(0 | I)〉
• Each (k− dr + 1)-subspace of V, disjoint from S, is contained in
exactly one codeword of C
• Let 0 ≤ i ≤ k − dr − 1. Each (k − dr − i)-subspace of V,
disjoint from S, is contained in exactly qm(i+1) codewords of C
• The codewords of C form the blocks of a transversal design
TDλ(

[
k
1
]
q
, qm) with λ = qm(k−dr−1)

• r = qm(k−dr)

• → take incidence matrix of TD as parity-check matrix
• See also Lavauzelle (2018): TDs as PIR codes
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Bounds on the rank of HC
• Etzion, Silberstein (2013):
qm ≤ rank2 HC ≤

[
k
1
]
q
(qm − 1) + 1 if q even.

• Kiermaier, Kurz, W. (2021+):
rankpHC ≤ rankHG︸ ︷︷ ︸

Hamada formula

−
[
m
1
]
q

Example:
• F3×4

2 : k = 3,m = 4 with dr = 2.
• TD1(7, 16), n = 112 → orthogonal checks
• Etzion, Silberstein (2013): 16 ≤ rank2 HC ≤ 106
• Kiermaier, Kurz, W. (2021+):

• Bound: rank2 HC ≤ 84
• Computer enumeration: there are 33 MRD codes
• Rank spectrum: 68 ≤ rank2 HC ≤ 83
• Rank 68: [112, 44, 24]2 code

• Meets known lower bound
• One-step majority logic decoding corrects 8 errors
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Designs in polar spaces

Finite classical polar spaces
type v rank
Q−(2n+ 1, q) 2n+ 2 n
Q(2n, q) 2n+ 1 n
Q+(2n+ 1, q) 2n+ 2 n+ 1
W (2n+ 1, q) 2n+ 2 n+ 1
H(2n, q2) n+ 1 n
H(2n+ 1, q2) n+ 2 n+ 1

Definition
A family of generators (subspaces of maximal rank k) in a finite polar
space Q is called t-design if there exists a positive integer λ such that
every t-dimensional subspace of Q is contained in exactly λ blocks.
(Dimensions are vector space dimensions)
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Designs in polar spaces

Known results
• Segre (1967): λ-regular system with regard to t− 1-spaces
• Trivial designs in Q+ for all t: latins and greeks
• First nontrivial 2-design:

Q(6, 3), λ = 2 [De Bruyn and Vanhove (2013)]
• Lansdown (2020): more examples for q = 3, 5
• See also Cossidente, Marino, Pavese, Smaldore (2021)

Kiermaier, Schmidt, W. (2021+)

• λi = λ
[nt]Q[ki]q
[ni ]Q[kt]q

• r = λ1

• ≥ 100 computer constructions for q = 2, 3 and t = 2
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2-designs in polar spaces
Codes from designs in polar spaces

First observations
• Design blocks are subspaces in an ambient vector space V
• Hamada formula somehow involved in rankHD

Examples
D: (v, k, λ)Q rankHD [n, k, d]2 r `
(6, 3, 1)Q+ 11 [35, 24, 4]2 3 1
(8, 4, 3)Q+ 43 [135, 92]2 15 2
(10, 5, 6)Q+ 187 [527, 340]2 54 4
(11, 5, 21)Q 517 [1023, 506]2 357 8
(8, 4, 5)W 135 [255, 120]2 45 4
(8, 3, 2)Q− 84 [119, 35, 24]2 18 4
(10, 4, 9)Q− 330 [495, 165]2 153 8
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Open questions

Subspace designs, q-GDDs
• Does dimCD = dimCG always hold?

Lifted MRD codes
• Role of dr for rankHC? (e.g. 83 vs. 84)

Designs in polar spaces
• Bounds for rankHD?

Applications
• Efficient error detection? (resolvable configurations?)
• Only information bits need to be decoded. Can this be
exploited?
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Summary

q-analogues of design configurations enable the use of the Hamada
formula and lead to interesting linear codes

Thank you for listening !
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Example

F2×2
2 : k = m = 2 with dr = 2.

C = {〈
(1000

0100
)
〉, 〈
(1010

0101
)
〉, 〈
(1011

0110
)
〉, 〈
(1001

0111
)
〉} lifted MRD code

〈
(1000

0100
)
〉 = {(10|00), (01|00), (11|00)}

[V
1

]
2
\
[

S
1

]
2

10 01 11
00 10 01 11 00 10 01 11 00 10 01 11

〈
(1000

0100

)
〉 1 1 1

〈
(1010

0101

)
〉 1 1 1

〈
(1011

0110

)
〉 1 1 1

〈
(1001

0111

)
〉 1 1 1
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