Signed Directed Graphs

Building on the 'new' Hermitian adjacency matrix

Pepijn Wissing

Based on joint work with:

E.R. van Dam

Inspiration

Hermitian adjacency matrix: $1, \pm i$ to encode a digraph Guo & Mohar, 2016; Liu & Li, 2015

Variant: use 1,
$$\omega$$
, $\bar{\omega}$ instead; $\omega = (1 + \sqrt{3}i)/2$
Mohar, 2020

Natural extension: include the remaining sixth roots of unity to accommodate a sign function

PW and Edwin R. van Dam. "Spectral fundamentals and characterizations of signed directed graphs." arXiv:2009.12181 (2020).

Signed Directed Graphs

Let D be a digraph (mixed graph) on graph G

Let
$$\phi : E(D) \mapsto \{1, -1\}$$

Then $\Phi = (D, \phi)$ is a Signed Directed Graph.

Let N be the 'variant' Hermitian adjacency matrix of D.

Set
$$\mathcal{E}_{uv} = N_{uv} \cdot \phi(u, v)$$

Then the Eisenstein matrix \mathcal{E} encodes Φ .

Often:
$$\Phi = (G, \varphi)$$

I. Workhorse Lemmas

Counting substructures

Lemma

The number of arcs/edges in Φ is a function of the spectrum

 $\varphi(C)$ Denotes the *gain* of a cycle C:

$$\to \varphi(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathcal{E}_{\mathbf{u}\mathbf{v}} \cdot \mathcal{E}_{\mathbf{v}\mathbf{w}} \cdot \mathcal{E}_{\mathbf{w}\mathbf{u}}.$$

Lemma

The sum of all triangle gains is a function of the spectrum

→ Useful when this number is very positive/negative

Diagonal switching

Definition

 Φ_1 and Φ_2 are switching equivalent if

$$\mathcal{E}(\Phi_1) = X \cdot \mathcal{E}(\Phi_2) \cdot X^{-1},$$

for a diagonal matrix X with $X_{ii} \in \{\omega^k \mid k = 1, \dots, 6\}$

Lemma

W.l.o.g., one may choose the weight of every edge in a spanning tree of Φ .

II. Characterization

Characterization

List all signed digraphs with

- Rank at most 3
- ► At most two non-negative eigenvalues

Two expansion operations:

- ► Twin replace every vertex j with O_{tj}
- ightharpoonup Clique replace every vertex j with K_{t_j}

Characterization: low rank

Argument:

- 1. List possible G
- 2. For each G, list all φ

Lemma

If $\Phi = (G, \varphi)$ is connected with \mathcal{E} -rank 2, then $G = K_{p,q}$.

Lemma

If $\Phi' = (C_4, \varphi)$ has gain not equal to 1, then Rank $(\Phi) > 2$.

Characterization: low rank

Theorem

If $\Phi = (G, \varphi)$ is connected with \mathcal{E} -rank 2, then $\Phi \sim K_{p,q}$.

Proof.

Note $G = K_{p,q}$. W.l.o.g., choose a spanning tree to be gain 1:

$$\mathcal{E} = \begin{bmatrix} O & W \\ W^* & O \end{bmatrix}, \text{ with } W = \begin{bmatrix} 1 & \mathbf{j}^{\top} \\ \mathbf{j} & X \end{bmatrix}. \tag{1}$$

Every induced C_4 must have gain 1 (interlacing), so X = J.

Characterization: low rank

Theorem

If $\Phi = (G, \varphi)$ is connected with \mathcal{E} -rank 3, then $\Phi \sim \Phi'$, where Φ' is a twin expansion of one of the six, below.

Characterization: few non-negative eigenvalues

Theorem

If Φ satisfies $\lambda_2 < 0$, then either $\Phi \sim K_n$ or $\Phi \sim K_n^*$

Characterization: few non-negative eigenvalues

Well... what about $\lambda_2 > 0 > \lambda_3$?

 O_3 -free \implies CE of P_4 or C_5 , possibly extra edges Many possibilities \rightarrow zoom in to special cases

Among others, characterized all $\Phi=({\it G},\varphi)$ with $\lambda_2>0>\lambda_3$ and ${\it G}=$

$$K_q - K_r$$
 K_s
 $K_p - K_t$
 K_s

III. Determined by the \mathcal{E} -spectrum

Determined by the \mathcal{E} -spectrum

Definition (Mohar, 2016)

 Φ is **weakly determined by its** \mathcal{E} -spectrum (WEDS) if it is switching isomorphic to every Φ' to which it is cospectral.

Definition (PW & Edwin van Dam, 2020)

 Φ is **strongly determined by its** \mathcal{E} -spectrum (SEDS) if it is isomorphic to every Φ' to which it is cospectral.

Theorem

 Φ is SEDS if and only if it is O_n .

Weak determination - Rank < 3

- ► Rank 2: ✓(under connectedness)
- ► Rank 3: X
 - ► $TE(K_3, [1 \ 8 \ 15])$ is cospectral to $TE(K_3^*, [3 \ 5 \ 16])$,
 - ► $TE(K_3^*, [3 4 7])$ is cospectral to $TE(T_4, [1 1 6 6])$,
 - ► $TE(K_3, [3\ 20\ 25])$ is cospectral to $TE(T_4, [3\ 5\ 10\ 30])$.

Weak Determination - $\lambda_2 > 0 > \lambda_3$

Idea: if $G = CE(C_5, [n-4\ 1\ 1\ 1\])$ and $\Phi = (G, \varphi)$ has $\lambda_2 > 0 > \lambda_3$, then any Φ' cospectral to Φ has:

- ► Exactly *n* vertices
- ightharpoonup Exactly $\binom{n-2}{2} + 2$ edges
- ► At least $\binom{n-2}{3} n + 4$ triangles
- ► No induced O₃

Very high triangle to edge ratio!

Weak Determination - $\lambda_2 > 0 > \lambda_3$

So if $G = CE(C_5, [n-4 \ 1 \ 1 \ 1])$ and $\Phi = (G, \varphi)$ has $\lambda_2 > 0 > \lambda_3$, then any Φ' cospectral to Φ has $\Gamma(\Phi') =$

- \triangleright CE(C₅, [n 4 1 1 1 1])
- \triangleright CE(P_4 , [n-3111])
- \triangleright CE(P₄, [2 1 n 4 1])
- One of three sporadic exceptions

Corresponding SDG's have distinct spectra

⇒ WFDS!

In conclusion

Eisenstein matrix offers a nice perspective on SDG's

Strong spectral determination is impossible In fact, impossible for all multiplicative groups of gains

Weak spectral determination is possible, but hard work

Thanks for your attention!

Questions?

References

- K. Guo and B. Mohar. Hermitian adjacency matrix of digraphs and mixed graphs. Journal of Graph Theory, 85 (1):217-248, 2016.
- J. Liu and X. Li. Hermitian-adjacency matrices and Hermitian energies of mixed graphs. Linear Algebra and its Applications, 466:182-207, 2015.
- B. Mohar. Hermitian adjacency spectrum and switching equivalence of mixed graphs. Linear Algebra and its Applications, 489: 324-340, 2016.
- B. Mohar. A new kind of Hermitian matrices for digraphs. Linear Algebra and its Applications, 584:343–352, 2020.
- G. Greaves. Cyclotomic matrices over the Eisenstein and Gaussian integers. *Journal of Algebra*, 372:560–583, 2012.
- P. Wissing, and E. R. van Dam. The negative tetrahedron and the first infinite family of connected digraphs that are strongly determined by the Hermitian spectrum. *Journal of Combinatorial Theory, Series A* 173:105232, 2020.

